STONCHEM® 726

PRODUCT DESCRIPTION
Stonchem 726 is a conductive and spark-proof unsaturated polyester resin lining system applied at a nominal thickness of 60 mil/1.5 mm. The resin, engineering fabric, mortarcoat, carbon filled topcoat sequencing provides a smooth, heavy-duty, conductive and non-sparking chemical barrier which is resistant to small static cracks and moderate thermal shock. When tested using the ESD S7.1 test method, this carbon based system measures a resistance lower than 1,000,000 ohms. The Stonchem 726 system has excellent resistance to hydrofluoric acid and strong oxidizers such as concentrated nitric and chromic acids.

USES, APPLICATIONS
• Secondary Containment Areas/Tank Farms
• Concrete Sumps, Vaults and Trenches
• Pump Pads and Pedestals
• Storage Tanks

PRODUCT ADVANTAGES
• Excellent chemical resistance to concentrated nitric, chromic and hydrofluoric acids
• Engineering fabric aids in crack resistance
• Mortarcoat for added abrasion resistance
• Carbon filled topcoat
• Factory proportioned units for easy application
• Conductive and non-sparking

CHEMICAL RESISTANCE
Stonchem 726 is formulated to resist a variety of chemical solutions. Refer to the Stonchem 700 Series Chemical Resistance Guide for lists of reagent concentrations and temperature recommendations.

PACKAGING
Stonchem 726 is packaged in units for easy handling. Each unit consists of:

Saturant
1.95 cartons of Stonchem 700/720 Liquids
Each carton contains:
2 jars of Peroxide
2 cans of Resin

Engineering Fabric
1 roll @ 200 sq. ft./18.58 sq. m roll

Mortarcoat
1.5 cartons of Stonchem 700/720 Resin
Each carton contains:
2 jars of Peroxide
2 cans of Resin
3 bags of 720 Mortarcoat aggregate

Topcoat
1 carton of Stonchem 720 Series Topcoat
Each carton contains:
2 jars of Peroxide
2 cans of Resin

COVERAGE
Each unit of Stonchem 726 will cover approximately 180 sq. ft./16.72 sq. m at a thickness of 60 mil/1.5 mm.

Note: Coverage rates shown are theoretical. Actual coverage rates may vary. Make necessary allowances for the condition of the surface to be coated, working conditions, waste, spillage, experience level and skill of the installers, etc.

PHYSICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength (ASTM D-638)</td>
<td>9,000 psi</td>
</tr>
<tr>
<td>Flexural Strength (ASTM C-580)</td>
<td>12,000 psi</td>
</tr>
<tr>
<td>Flexural Modulus of Elasticity (ASTM C-580)</td>
<td>6×10^5 psi</td>
</tr>
<tr>
<td>Hardness (ASTM D-2240, Shore D)</td>
<td>85 to 90</td>
</tr>
<tr>
<td>Abrasion Resistance (ASTM D-4060, CS-17)</td>
<td>0.10 gm max. weight loss</td>
</tr>
<tr>
<td>Thermal Coefficient of Linear Expansion</td>
<td>2×10^{-5} in./in.˚C</td>
</tr>
<tr>
<td>Color</td>
<td>Black</td>
</tr>
<tr>
<td>Cure Rate (70˚F/21˚C)</td>
<td>4 to 6 hours tack-free</td>
</tr>
<tr>
<td>VOC (ASTM D-2369, Method E)</td>
<td>700/720 Liquids 31 g/l</td>
</tr>
<tr>
<td>720 Topcoat</td>
<td>18 g/l</td>
</tr>
</tbody>
</table>

Note: The above physical properties were measured in accordance with the referenced standards. Samples of the actual floor system, including binder and filler, were used as test specimens. All sample preparation and testing is conducted in a laboratory environment; values obtained on field applied materials may vary and certain test methods can only be conducted on lab made test coupons.
STORAGE CONDITIONS
Store all components between 50 to 75°F/10 to 24°C in a dry area. Keep out of direct sunlight. Avoid excessive heat and do not freeze. The shelf life is 6 months in the original, unopened container. Store all engineering fabric in a clean and dry area.

SUBSTRATE
Stonchem 726, with the appropriate primer, is suitable for application over concrete, wood, brick, quarry tile, metal or Stonhard Stonset grouts. For questions regarding other possible substrates or an appropriate primer, contact your local Stonhard representative or Technical Service.

SUBSTRATE PREPARATION
Proper preparation is critical to ensure an adequate bond and system performance. The substrate must be dry and properly prepared utilizing mechanical methods. Questions regarding substrate preparation should be directed to your local Stonhard representative or Technical Service.

APPLICATION GUIDELINES
For optimal working conditions, substrate temperature must be between 60 to 80°F/15 to 27°C. Cold areas must be heated until the slab temperature is above 55°F/13°C to ensure the material achieves a proper cure. A cold substrate will make the material stiff and difficult to apply. Warm areas or areas in direct sunlight must be shaded or arrangements made to work during evenings or at night. A warm substrate (60 to 80°F/15 to 27°C) will aid in the material’s workability; however, a hot substrate (80 to 100°F/27 to 37°C) or a substrate directly in the sun will shorten the material’s working time and can cause other phenomenon such as pinholing and bubbling. Substrate temperature should be greater than 5°F/3°C above dew point.

Application and curing times are dependent upon ambient and surface conditions. Consult Stonhard’s Technical Service Department if conditions are not within recommended guidelines.

FIELD GEL TESTS
Due to the unique nature of the 720 Series resins, their reactivity is affected by storage conditions and age; therefore, it is important to test the cure of the materials prior to application. Gel tests should be performed for each lot of each product shipped to a job to prevent problems related to material curing. Field gel test kits are included in every shipment of 720 Series material. One gel test contains directions and all of the necessary materials to conduct the testing. Test all lots of material prior to use.

PRIMING
Vacuum the substrate before priming, and make sure the surface is dry. The use of Stonchem 700/800 Series Primer is necessary in all applications of Stonchem 726. This ensures maximum product performance. (See the Stonchem 700/800 Series Primer Product Data sheet for details.)

Note: Stonchem 700/800 Series Primer must be tack-free prior to application of the Saturant-Basecoat.

STATIC CONTROL PROPERTIES
Stonchem 726 has been specifically designed to comply with the ANSI/ESD S20.20 specification for the protection of electrical and electronic parts, assemblies and equipment.

Surface Resistance .. < 1 megohms (ESD-S7.1)
Body Voltage Generation < 100 volts* (ESD STM97.2)

*Body Voltage Generation is not solely a function of flooring conductivity but is a combination of many factors, including footwear and environmental conditions. Your specific environment and choice of footwear may yield slightly different results.

Electrostatic Discharge (ESD) flooring has a variety of applications from microchip manufacturing to military ordinance. Therefore, each facility may have unique resistance requirements based on their individual ESD programs. It is important to identify the resistance requirements and test method used for each project prior to installing any ESD flooring.

ELECTRICAL TESTING
Once the conductive mortarcoat layer has cured, it must be tested for proper conductivity. Point-to-point and point-to-ground readings should be taken and all values should fall below 5.0x10^5 ohms(Ω).

The floor must also be tested after the carbon filled topcoat has cured. Once the conductive sealer is tack-free, point-to-point and point-to-ground readings should be taken. All values must fall below 1.0x10^6 ohms(Ω).

Note: Stonhard tests all floors in accordance with the ESD S7.1 test method. Various other ESD standards and test methods are available and they each have their own unique parameters. Please contact the Stonhard’s technical service department if you wish to use a different test method.

APPLYING
Saturant - Basecoat
Mix peroxide and resin in a 5 gallon bucket using a heavy-duty, slow-speed drill (400 to 600 rpm) with a mixing blade for one minute. Pour the saturant onto the substrate and spread out with a 15 mil notched squeegee. The saturant should be spread out in a sequence to allow application of the engineering fabric. Do not leave any puddling during this squeegee step. Puddling will lead to over saturation of the fiberglass.

Engineering Fabric
Place the engineering fabric on the saturant immediately after the saturant is applied. This is important to achieve maximum wetting. Press the fabric into the saturant with a dry, medium nap roller. Overlap adjacent fabric 1/2 in./13 mm. Immediately apply the saturant.
Saturant
Mix peroxide and resin in a 5 gallon bucket using a heavy-duty, slow-speed drill (400 to 600 rpm) with a mixing blade for one minute. Apply the saturant to the engineering fabric with a saturated medium nap roller. To wet the roller, dip it into the mixing bucket. Always work from the bucket. Do not pour the saturant directly onto the fabric. This will decrease the saturant’s coverage. If air temperature is above 80°F/27°C, the use of plastic buckets will increase the pot life of the material. The fabric is completely saturated when white strands are no longer present. When the fabric is completely saturated, roll with a ribbed roller to release air pockets in the reinforcement and to help mesh the glass and saturant together. To saturate the overlaps, roll several times over the length of the overlap with a saturated roller. Then, roll with a ribbed roller several times until the overlap is no longer visible. Allow the saturant and fabric to cure (usually 4 to 6 hours) before proceeding.

Mortarcoat
Lightly sand the fabric/saturant layer with a sanding disc attachment in areas with protruding fibers. Pre-mix the peroxide and resin in a 5 gallon mixing bucket with a heavy-duty, slow-speed drill (400 to 600 rpm) with a mixing blade for one minute. Next, gradually add the Mortarcoat aggregate while mixing for an additional two minutes. For vertical applications, use Vertical Mortarcoat aggregate. Mixing is complete when no dry clumps of material exist. Pour the material onto the floor and spread out with a 15 mil notched squeegee. Backroll the area with a medium nap roller to remove squeegee lines. The material may appear rough at first but will level out to a smooth finish. For vertical surfaces, use a large steel trowel or knife to pull an initial coat of vertical material onto the wall, then finish smooth with a flat rubber squeegee.

Topcoat
Lightly sand the Mortarcoat in areas where protrusions exist. Vacuum the area completely. Mix the peroxide and resin in a 5 gallon mixing bucket using a heavy-duty, slow-speed drill (400 to 600 rpm) with a mixing blade for one minute. Pour the material onto the floor and spread out with a 15 mil notched squeegee. Backroll the area with a medium nap roller to remove squeegee lines, using long roll strokes to decrease the visibility of roller lines. For vertical surfaces, pour a bead of material along the base of the wall. Using a medium nap roller, roll the material up onto the wall. The wet film thickness of the coating is 10 to 12 mil/250 to 300 microns. Check the thickness with a wet film gauge.

Precautions
- Avoid contact with Stonchem 726 resin (polyester resin and styrene monomer) and peroxide (catalyst/organic peroxide), as they may cause skin, respiratory and eye irritation.
- Acetone is recommended for clean up of Stonchem 726 resin (polyester resin and styrene monomer) and peroxide (catalyst/organic peroxide) material spills. Use these materials only in strict accordance with the manufacturers’ recommended safety procedures. Dispose of waste materials in accordance with government regulations.
- The use of NIOSH/MSHA approved respirators using an organic vapor/acid gas cartridge is mandatory.
- The selection of proper protective clothing and equipment will significantly reduce the risk of injury. Body covering apparel, safety goggles or safety glasses and impermeable gloves are required.
- In case of contact, flush area with water for 15 minutes and seek medical attention. Wash skin with soap and water.
- If material is ingested, immediately contact a physician. DO NOT INDUCE VOMITING.
- Use only with adequate ventilation. Inhalation of vapors may cause severe headaches, nausea and possibly unconsciousness.

Notes
- Material Safety Data Sheets for Stonchem 726 are available on line at www.stonhard.com under Products or upon request.
- Specific information regarding chemical resistance of Stonchem 726 is available in the Stonchem 700 Series Chemical Resistance Guide.
- A staff of technical service engineers is available to assist with installation or to answer questions related to Stonhard products.
- Requests for literature can be made through local sales representatives and offices or corporate offices located worldwide.

Stonhard
Stonhard believes the information contained here to be true and accurate as of the date of publication. Stonhard makes no warranty, expressed or implied, based on this literature and assumes no responsibility for consequential or incidental damages in the use of the systems described, including any warranty of merchantability or fitness. Information contained here is for evaluation only. We further reserve the right to modify and change products or literature at any time and without prior notice.

Rev: 08/13 © 2013 Stonhard