Fabreeka International, Inc. -Foundation Isolation with Low Frequency Pneumatic Isolators

DOWNLOADS
In certain applications, it is not desirable or feasible to mount a machine directly on vibration isolators. Direct installation of vibration isolators on a machine whose frame/bed stiffness is inadequate for such, can cause bending, relative displacement and other problems, even when the floor...

Category: foundation isolation | foundation isolators | pneumatic isolators

MasterFormat: Sound, Vibration, and Seismic Control | Manufactured Sound and Vibration Control Components



Fabreeka International, Inc.
PO Box 210
1023 Turnpike Street
Stoughton, MA 02072
Tel: (800) 322-7352
Fax: (781) 341-3983

info@fabreeka.com

http://www.fabreeka.com

Find a rep/distributor

Request More Info

DOWNLOADS

Related Products

Overview



Foundation Isolation with Low Frequency Pneumatic Isolators

Foundation Isolation with Low Frequency Pneumatic Isolators

In certain applications, it is not desirable or feasible to mount a machine directly on vibration isolators.

Direct installation of vibration isolators on a machine whose frame/bed stiffness is inadequate for such, can cause bending, relative displacement and other problems, even when the floor is sufficiently rigid. For smaller machines, this can be remedied by securing the frame/bed to a rigid plate and then installing the isolators between the plate and the floor. For larger machines, the frame/bed is attached to a properly designed concrete foundation, which is then supported on the appropriate isolators for the application.

Fabreeka designs and manufactures large capacity pneumatic and air bag isolators, which support loads from 13,000 lbs (5,800 kg) to 120,000 lbs (54,000 kg) each for foundation isolation applications requiring low frequency vibration isolation. Air bag isolators provide a larger dynamic stroke than our standard PAL isolators and are used in applications where a low natural frequency (0.5 - 1.5 Hz) and large displacements must co-exist.

Associated Applications

Metrology

MRI/NMR

Precision Equipment

Test Equipment

Key Features/Benefits

A concrete support structure (foundation, inertia block, reaction mass) is used to satisfy one or more of the following conditions:

1). Provide/improve structural stiffness for the machine/equipment being isolated. Some types of equipment do not operate properly unless supported by a rigid structure. This applies to certain types of machine tools that are not inherently rigid and therefore need a rigid support to maintain the prescribed accuracy. In other types of machinery (such as printing presses) consisting of articulated components, a rigid support may be needed to maintain the proper alignment of working parts.

2). Increase stability on the vibration isolators by limiting dynamic deflection. If a machine (such as a diesel engine, forging hammer or electro-dynamic shaker) generates relatively large forces during its operation, the overall movement of the machine on its isolation system tends to become excessive unless its effective mass is substantially increased. This increase in effective mass can be achieved by attaching the machine rigidly to an inertia block and mounting the inertia block (reaction mass) on isolators.

3). Isolate the equipment/machine from the environment when installing isolators directly beneath the unit would compromise the conditions above. In applications in which the frequency of excitation is low, the natural frequency of the isolation system must be very low to provide low transmissibility and therefore good vibration isolation. A problem often arises with a machine intended to be mounted only at its base, because a low-stiffness base-mounted system tends to be unstable and will allow excessive motion to take over.

Technical Specifications:

Pneumatic isolators are installed after the foundation has cured and the machine/equipment has been installed and anchored properly. The isolators are positioned under the foundation at predetermined support points and then activated to float or lift the foundation and machine off the pit floor.

The desired natural frequency (stiffness) and damping for the isolation system is usually established by the operating characteristics of the mounted equipment (source) and/or the isolation required (recipient). The design basis for the support foundation natural frequency assumes that the foundation is a rigid body with a stiffness much greater than the isolators. Similarly, the pit base also should be stiffer than the soil supporting it.

For large machine tools and CMM's using automatic part handling systems where parts can weigh several tons, loading and unloading can generate vertical motion on the isolators. To avoid this problem, Fabreeka can vary the internal pressure of the isolators to lower the support foundation onto hard stops.

Fabreeka International, Inc.
PO Box 210
1023 Turnpike Street
Stoughton, MA 02072
Tel: (781) 341-3655
Fax: (781) 341-3983
Tollfree: (800) 322-7352
E-mail: info@fabreeka.com
Web site: http://www.fabreeka.com





Sweetsstakes