

Alion Science and Technology

TEST REPORT

630/232-0104 FOUNDED 1918 BY WALLACE CLEMENT SABINE

FOR: Kinetics Noise Control, Inc. Dublin, OH Sound Transmission Loss Test <u>RALTM-TL09-377</u>

Page 1 of 5

- ON: Ceramic Tile on 3 mm Kinetics IsoLayment HB over 23/32 T&G Plywood on 11-7/8 Inch TJI iLevel 230
- Joist at 24 Inches on Center with 6.25 Inch Fiberglass Batt Insulation, Kinetics WAVE Hangers, Double Layer 5/8 Inch Type X Gypsum Board

CONDUCTED: 21 December 2009

TEST METHOD

Unless otherwise designated, the measurements reported below were made with all facilities and procedures in explicit conformity with the ASTM Designations E90-04 and E413-04, as well as other pertinent standards. Riverbank Acoustical Laboratories has been accredited by the U.S. Department of Commerce, National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP) for this test procedure (NVLAP Lab Code: 100227-0). A description of the measuring technique is available separately.

DESCRIPTION OF THE SPECIMEN

The test specimen was designated by the client as ceramic tile on 3 mm Kinetics IsoLayment HB over 23/32 T&G Plywood on 11-7/8 inch TJI iLevel 230 Joist at 24 inches on center with 6.25 inch fiberglass batt insulation, Kinetics WAVE Hangers, double layer 5/8 inch Type X gypsum board. The overall dimensions of the specimen as measured were nominally 4.27 m (168 in.) wide by 6.10 m (240 in.) high and 400 mm (15.75 in.) thick. The specimen was constructed directly in the laboratory's 4.27 m (14 ft) by 6.10 m (20 ft) test opening and was sealed on the periphery (both sides) with dense mastic.

The description of the specimen was as follows: From the top down, the floor consisted of ceramic tile floor over 3 mm IsoLayment HB underlayment with a HighBond fibrous bonding layer on 23/32" span rated OSB attached to nominal 12" TJI joist with a fiberglass insulated cavity, a double layer of 5/8" gypsum board ceiling attached using Kinetics WAVE Hangers and hat track. A more detailed description of the test assembly appears in the following sections.

Ceramic Tile Floor and Underlayment

The finished floor consisted of glazed ceramic tile. Each tile measured nominally 305 mm (12 in.) wide by 305 mm (12 in.) long by 7.6 mm (0.3 in.) thick. The tiles were applied to a $\frac{1}{4} \times \frac{1}{4}$ trowel bed of speed set fortified thinset mortar and were fully grouted. The total weight of the

This report shall not be reproduced except in full, without the written approval of RAL. THE RESULTS REPORTED ABOVE APPLY ONLY TO THE SPECIFIC SAMPLE SUBMITTED FOR MEASUREMENT. NO RESPONSIBILITY IS ASSUMED FOR PERFORMANCE OF ANY OTHER SPECIMEN.

Alion Science and Technology

test report

630/232-0104 FOUNDED 1918 BY WALLACE CLEMENT SABINE

Kinetics Noise Control, Inc.

21 December 2009

RALTM-TL09-377

Page 2 of 5

ceramic tile floor with thinset and grout as calculated was 459 kg (1,013 lbs). The finished floor was allowed to cure a minimum of 7 days prior to testing. The tile floor was installed over Kinetics IsoLayment HB-3 mm, a bonded recycled rubber material with a HighBond fibrous bonding layer measuring 3 mm (0.12 in.) thick adhered to the subfloor assembly using a nominal 3 mm (0.125 in.) trowel application of urethane adhesive. Total weight of the underlayment was 54.2 kg (119.5 lbs).

Wood Subfloor and Support Assembly

The upper subfloor consisted of 15 mm (19/32 in.) BC plywood screwed using 51 mm (2 in.) long wood screws at 305 mm (12 in.) on center. The base floor consisted of 18 mm (23/32 in.) tongue and groove OSB board glued and nailed to iLevel TJI 230 Series Truss Joist and box sill using 63.5 mm (2.5 in.) long 8d nails at 203 mm (8 in.) on center at the perimeter and 305 mm (12 in.) on center in the field. The 302 mm (11.875 in.) deep TJI joists horizontally spanned the width of the test opening and were attached to the sill plate with 10d nails. The joists were spaced on 610 mm (24 in.) centers, starting 305 mm (12 in.) either side of the centerline. Total weight of the subfloor and support assembly was 771 kg (1,699 lbs).

Insulation

The cavities between the joists contained a layer of 159 mm (6.25 in.) thick by 610 mm (24 in.) wide unfaced fiberglass batt insulation. The fiberglass batts were stapled into the upper section of the cavity. The weight of the insulation was 34.5 kg (76 lbs).

Ceiling Assembly

The ceiling assembly consisted of 20 gauge roll-formed drywall furring channel (aka hat track) which measured 22 mm (0.875 in.) deep by 64 mm (2.5 in.) wide. Seven (7) full runs of drywall furring channels were mounted to Kinetics WAVE Acoustical Leaf Spring Ceiling Hangers, spaced at 610 mm (24 in.) by 1.22 m (48 in.) center to center. Runs of drywall furring channels extending the full length of the test specimen included splices which were overlapped 102 mm (4 in.) and double wire tied with 18 gauge tie wire as necessary. Total weight of the channels as measured was 20.2 kg (44.5 lbs).

The hat track was held in place by the Kinetics WAVE Hangers, each fastened to the joists with two (2), $10 \times 1-1/2$ in. Round Washer Recex Lo Root screws measuring 38 mm (1.5 in.) long.

This report shall not be reproduced except in full, without the written approval of RAL. THE RESULTS REPORTED ABOVE APPLY ONLY TO THE SPECIFIC SAMPLE SUBMITTED FOR MEASUREMENT. NO RESPONSIBILITY IS ASSUMED FOR PERFORMANCE OF ANY OTHER SPECIMEN.

ACCREDITED BY DEPARTMENT OF COMMERCE, NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM FOR SELECTED TEST METHODS FOR ACOUSTICS. THE LABORATORY'S ACCREDITATION OR ANY OF ITS TEST REPORTS IN NO WAY CONSTITUTES OR IMPLIES PRODUCT CERTIFICATION, APPROVAL, OR ENDORSEMENT BY NIST.

Alion Science and Technology

est report

630/232-0104 FOUNDED 1918 BY WALLACE CLEMENT SABINE

Kinetics Noise Control, Inc.

RALTM-TL09-377

21 December 2009

Page 3 of 5

The WAVE hangers were installed parallel to the joist to accommodate installation of the hat track perpendicular to the joists and spaced on 610 mm (24 in.) centers. For continuous run of hat track the WAVE 44 hangers were installed on the joists at 1.22 m (48 in.) centers. A total of 35 hangers were used in the field and four (4) WAVE 22 hangers were used in the corners only. Total weight of the hangers was 2.9 kg (6.5 lbs). A description of the acoustical leaf spring ceiling hanger is as follows: WAVE 44: A 32 mm (1.25 in.) wide by 216 mm (8.5 in.) long by 25 mm (1 in.) overall thick continuous formed hanger using 1.07 mm (0.042 in.) thick hardened spring steel. WAVE 22: A 32 mm (1.25 in.) wide by 216 mm (8.5 in.) long by 25 mm (1 in.) overall thick continuous formed hanger using 0.89 mm (0.035 in.) thick hardened spring steel.

The ceiling consisted of a double layer of 16 mm (0.625 in.) thick Type X gypsum board attached to the hat track. The base layer was attached with 25 mm (1 in.) Type S screws at 305 mm (12 in.) centers in the field and at 203 mm (8 in.) center at the butt joints. The face layer was attached with 41 mm (1.625 in.) Type S screws at 305 mm (12 in.) centers in the field and at 203 mm (8 in.) center at the butt joints. The total weight of the gypsum board was 502 kg (1,107 lbs). Joints were treated with paper tape embedded in all-purpose joint compound and screw heads were covered with compound. Total weight of the ceiling assembly with insulation was 584 kg (1,288 lbs). The perimeter of the completed test assembly was sealed with dense mastic.

The weight of the specimen as measured was 1,896 kg (4,180 lbs.), an average of 72.7 kg/m² (14.9 lbs/ft^2) . The transmission area used in the calculations was 26 m² (280 ft²). The source and receiving room temperatures at the time of the test were $23\pm1^{\circ}C$ ($73\pm3^{\circ}F$) and $49\pm2\%$ relative humidity. The source and receive reverberation room volumes were 133 m³ (4,713 ft³) and 86 m^3 (3,032 ft^3), respectively.

This report shall not be reproduced except in full, without the written approval of RAL. THE RESULTS REPORTED ABOVE APPLY ONLY TO THE SPECIFIC SAMPLE SUBMITTED FOR MEASUREMENT. NO RESPONSIBILITY IS ASSUMED FOR PERFORMANCE OF ANY OTHER SPECIMEN.

ACCREDITATION PROGRAM FOR SELECTED TEST METHODS FOR ACOUSTICS. THE LABORATORY'S ACCREDITATION OR ANY OF ITS TEST REPORTS IN NO WAY CONSTITUTES OR IMPLIES PRODUCT CERTIFICATION, APPROVAL, OR ENDORSEMENT BY NIST. NVLAP Lab Code 100227-0

RIVERBANK ACOUSTICAL LABORATORIES

1512 S. BATAVIA AVENUE GENEVA, ILLINOIS 60134 Alion Science and Technology

ST REP

630/232-0104 FOUNDED 1918 BY WALLACE CLEMENT SABINE

Kinetics Noise Control, Inc.

21 December 2009

RALTM-TL09-377

Page 4 of 5

TEST RESULTS

Sound transmission loss values are tabulated at the eighteen standard frequencies. A graphic presentation of the data and additional information appear on the following pages. The precision of the TL test data is within the limits set by the ASTM Standard E90-04.

<u>FREQ.</u>	<u>T.L.</u>	<u>C.L.</u>	<u>DEF.</u>		FREQ.	<u>T.L.</u>	<u>C.L.</u>	<u>DEF.</u>
				_				
100	40	0.82			800	62	0.29	1
125	45	0.80			1000	66	0.21	
160	45	0.65	3		1250	69	0.17	
200	16	0.77	F		1600	70	0.17	
200	46	0.77	5		1600	72	0.17	
250	49	0.74	5		2000	73	0.11	
315	52	0.54	5		2500	73	0.11	
400	55	0.61	5		3150	79	0.26	
500	58	0.36	3		4000	85	1.49	
630	61	0.31	1		5000	85	3.13	

STC=61

ABBREVIATION INDEX

FREQ. = FREQUENCY, HERTZ, (cps)

- T.L. = TRANSMISSION LOSS, dB
- C.L. = UNCERTAINTY IN dB, FOR A 95% CONFIDENCE LIMIT
- DEF. = DEFICIENCIES, dB<STC CONTOUR (SUM OF DEF = 28)
- STC = SOUND TRANSMISSION CLASS

Approved by

Tested by

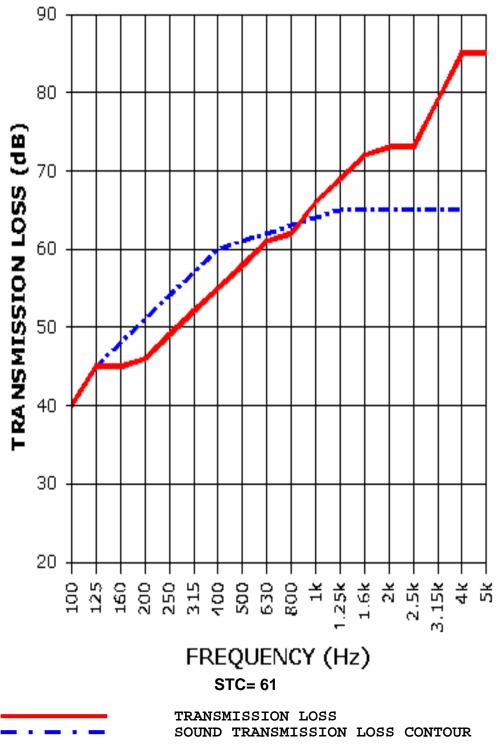
Dean Victor Senior Experimentalist

David L. Moyer Laboratory Manager

This report shall not be reproduced except in full, without the written approval of RAL. THE RESULTS REPORTED ABOVE APPLY ONLY TO THE SPECIFIC SAMPLE SUBMITTED FOR MEASUREMENT. NO RESPONSIBILITY IS ASSUMED FOR PERFORMANCE OF ANY OTHER SPECIMEN.

NVLAP Lab Code 100227-0

ACCREDITED BY DEPARTMENT OF COMMERCE, NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM FOR SELECTED TEST METHODS FOR ACOUSTICS. THE LABORATORY'S ACCREDITATION OR ANY OF ITS TEST REPORTS IN NO WAY CONSTITUTES OR IMPLIES PRODUCT CERTIFICATION, APPROVAL, OR ENDORSEMENT BY NIST.


Alion Science and Technology

TEST REPORT

630/232-0104 FOUNDED 1918 BY WALLACE CLEMENT SABINE

Page 5 of 5

This report shall not be reproduced except in full, without the written approval of RAL.

THE RESULTS REPORTED ABOVE APPLY ONLY TO THE SPECIFIC SAMPLE SUBMITTED FOR MEASUREMENT. NO RESPONSIBILITY IS ASSUMED FOR PERFORMANCE OF ANY OTHER SPECIMEN.

ACCREDITED BY DEPARTMENT OF COMMERCE, NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM FOR SELECTED TEST METHODS FOR ACOUSTICS. THE LABORATORY'S ACCREDITATION OR ANY OF ITS TEST REPORTS IN NO WAY CONSTITUTES OR IMPLIES PRODUCT CERTIFICATION, APPROVAL, OR ENDORSEMENT BY NIST.