

PRODUCT CATALOG

GRATING SOLUTIONS

Light Duty Steel Grating

Ohio Gratings offers a wide variety of light duty steel grating styles including electro

forge welded, dove tail pressure locked, riveted and swaged...

Electro forge welded grating is the more traditional industrial product while dove tail pressure locked, riveted and swaged offer smoother lines and a more pleasing appearance than the Organic Tech. OH - Lt. Duty typical welded grating. These

products appeal to the architectural market and offer a different look and can be used not only for industrial applications but also commercial applications where a higher profile product might be desired. The dove tail and swaged products are also part of our Grater Access line of products conforming to ADA standards.

Aluminum Plank

Aluminum plank is a very versatile product. It is available unpunched or in a variety of punch patterns. Slip resistent surfaces are also available. Aluminum plank is ideal for multiple industrial applications, everything from wastewater treatment plants to ADA compliant walkways (shown right) and platforms.

Heavy Duty Steel Grating

Welded carbon heavy duty steel grating is the most popular choice where high strength

is the primary grating requirement. Another option that meets ADA standards is Wheels n' Heels[®]...

The main bars are slotted and assembled with cross bars which are welded with one fillet weld at every joint. Stainless steel can also be provided for those high corrosive applications. This

product meets the demanding vehicle loading requirements of AASHTO and is geared to handle heavy rolling loads. Slip resistant surfaces are available.

The typical markets for heavy duty steel grating include: ramps, docks, industrial flooring, industrial cover trenches, airfield ramps & trenches, airplane landing mats, machinery support trenches, bridge decking, bridge sidewalks, bridge trenches and many more applications.

THE OHIO GRATINGS STORY

OGi has rallied around one key principle over the years

..."Make it Right & Ship When Promised"

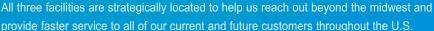
Since 1970, our motto has allowed us to expand successfully over the years. OGi began as a light duty steel grating fabricator and expanded into the manufacturing of heavy duty welded steel and stainless steel grating. That early success led to other expansions including the manufacturing of aluminum swaged and dovetail bar grating. A few years later we added aluminum plank to our line of flooring products and then finally fiberglass to round out our product offerings.

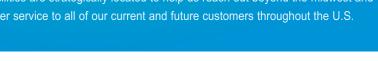
OGI HOME OFFICE IN CANTON. OH

This experience has led us into other markets in addition to the traditional industrial flooring market. OGi now has the ability to provide a myriad of aluminum and steel architectural products to the marketplace. Our manufacturing capabilities and engineering "know-how" allow us to work with owners, suppliers, architectural and engineering firms.

Our special support team can help you meet all your unique design requirements, quickly and professionally...

- ▶ **Detailing Support** Working from customer supplied drawings, our detailing group provides professional detailed shop drawings to insure a successful grating project.
- ▶ Value Engineering Our on-staff engineers & detailers check & double check all the calculations to make sure the grating for your project meets or exceeds your structural expectations.
- ► Custom Fabrication All types of custom fabrication are required on industrial projects. OGi has built grating panels and fabricated these projects for well over 25 years. Typical fabrication consists of straight cut, straight band, circular cut, circular band, end band, toe plate attachment and adding checker plate to the top of the grating.




INTERSTATE GRATINGS, UT

RIDGELAND, SC A

Our recent expansions in South Carolina, Utah and Texas demonstrate our commitment to service...

▲ Houston, TX

TABLE OF CONTENTS

General Information
Industrial Grating Solutions
Ohio Gratings Story
Table of Contents4
Aluminum Grating
Aluminum Features and Benefits5
Aluminum Products
Aluminum Design Criteria
Aluminum Rectangular Bar - SG Series8-9
Traininan revailgular bar 50 bertes
Aluminum I-Bar - SGI Series
Aluminum Flush Top - SGF Series
Aluminum Dove Tail - ADT Series
Thailinain Bove Tain Tib'i Series
Aluminum LiteBar - SGLi Series
19 & 15-Space Aluminum LiteBar Load Tables
11 & 7-Space Aluminum LiteBar Load Tables
19-Space Aluminum Profiles
19-Space Aluminum Load Tables
15-Space Aluminum Profiles
15-Space Aluminum Load Tables
11-Space Aluminum Profiles
11-Space Aluminum Fromes 24 11-Space Aluminum Load Tables 25
7-Space Aluminum Profiles
/-Space Aluminum Load Tables2/
Aluminum Riveted - AR Series
Aluminum Riveted - AR Series
Aluminum Riveted 12-AR-7/12-AR-3½31
Aluminum Plank
Aluminum Plank Punch Pattern 34
Aluminum Plank Load Tables
Aluminum Grating Frames
Aluminum Applications40
Stool Creating
Steel Grating
Light Duty Steel Features & Benefits41
Light Duty Steel42
Light Duty Design Criteria43
Light Duty Welded Steel - W Series44-45
Steel Dove Tail - DT Series
Swaged Carbon Steel - SGCS Series
Swaged Carbon Steel Applications
19-Space L.D. Welded Steel, Steel Dove Tail & Swaged
Carbon Steel Profiles
19-Space L.D. Welded Steel, Steel Dove Tail & Swaged
Carbon Steel Load Tables
15-Space L.D. Welded Steel, Steel Dove Tail & Swaged
Carbon Steel Profiles
15-Space L.D. Welded Steel, Steel Dove Tail & Swaged
Carbon Steel Load Tables53
11-Space L.D. Welded Steel, Steel Dove Tail & Swaged

11-Space L.D. Welded Steel, Steel Dove Tail & Swaged Carbon Steel Load Tables
7-Space Steel Dove Tail & Swaged Carbon Steel Profiles 56 7-Space Steel Dove Tail & Swaged Carbon Steel Load Tables 57 L.D. Riveted Steel - R Series 58 L.D. Riveted Steel - 18 Series 59 L.D. Riveted Steel - 12 Series 60 Steel Grating Frames 61 Steel Treads 62-63 Swaged Stainless Steel - SGSS Series 64-65 Swaged Stainless Steel - 19-Space 66 Swaged Stainless Steel - 15-Space 67 Swaged Stainless Steel - 11-Space 68 Swaged Stainless Steel - 7-Space 69 Heavy Duty Steel 70 H.D. Steel - Design Criteria 71
7-Space Steel Dove Tail & Swaged Carbon Steel Load Tables 57 L.D. Riveted Steel - R Series 58 L.D. Riveted Steel - 18 Series 59 L.D. Riveted Steel - 12 Series 60 Steel Grating Frames 61 Steel Treads 62-63 Swaged Stainless Steel - SGSS Series 64-65 Swaged Stainless Steel - 19-Space 66 Swaged Stainless Steel - 15-Space 67 Swaged Stainless Steel - 11-Space 68 Swaged Stainless Steel - 7-Space 69 Heavy Duty Steel 70 H.D. Steel - Design Criteria 71
L.D. Riveted Steel - R Series 58 L.D. Riveted Steel - 18 Series 59 L.D. Riveted Steel - 12 Series 60 Steel Grating Frames 61 Steel Treads 62-63 Swaged Stainless Steel - SGSS Series 64-65 Swaged Stainless Steel - 19-Space 66 Swaged Stainless Steel - 15-Space 67 Swaged Stainless Steel - 11-Space 68 Swaged Stainless Steel - 7-Space 69 Heavy Duty Steel 70 H.D. Steel - Design Criteria 71
L.D. Riveted Steel - 18 Series 59 L.D. Riveted Steel - 12 Series 60 Steel Grating Frames 61 Steel Treads 62-63 Swaged Stainless Steel - SGSS Series 64-65 Swaged Stainless Steel - 19-Space 66 Swaged Stainless Steel - 15-Space 67 Swaged Stainless Steel - 11-Space 68 Swaged Stainless Steel - 7-Space 69 Heavy Duty Steel 70 H.D. Steel - Design Criteria 71
L.D. Riveted Steel - 12 Series 60 Steel Grating Frames 61 Steel Treads 62-63 Swaged Stainless Steel - SGSS Series 64-65 Swaged Stainless Steel - 19-Space 66 Swaged Stainless Steel - 15-Space 67 Swaged Stainless Steel - 11-Space 68 Swaged Stainless Steel - 7-Space 69 Heavy Duty Steel 70 H.D. Steel - Design Criteria 71
Steel Grating Frames 61 Steel Treads 62-63 Swaged Stainless Steel - SGSS Series 64-65 Swaged Stainless Steel - 19-Space 66 Swaged Stainless Steel - 15-Space 67 Swaged Stainless Steel - 11-Space 68 Swaged Stainless Steel - 7-Space 69 Heavy Duty Steel 70 H.D. Steel - Design Criteria 71
Steel Treads 62-63 Swaged Stainless Steel - SGSS Series 64-65 Swaged Stainless Steel - 19-Space 66 Swaged Stainless Steel - 15-Space 67 Swaged Stainless Steel - 11-Space 68 Swaged Stainless Steel - 7-Space 69 Heavy Duty Steel 70 H.D. Steel - Design Criteria 71
Swaged Stainless Steel - SGSS Series64-65Swaged Stainless Steel - 19-Space66Swaged Stainless Steel - 15-Space67Swaged Stainless Steel - 11-Space68Swaged Stainless Steel - 7-Space69Heavy Duty Steel70H.D. Steel - Design Criteria71
Swaged Stainless Steel - 19-Space66Swaged Stainless Steel - 15-Space67Swaged Stainless Steel - 11-Space68Swaged Stainless Steel - 7-Space69Heavy Duty Steel70H.D. Steel - Design Criteria71
Swaged Stainless Steel - 19-Space66Swaged Stainless Steel - 15-Space67Swaged Stainless Steel - 11-Space68Swaged Stainless Steel - 7-Space69Heavy Duty Steel70H.D. Steel - Design Criteria71
Swaged Stainless Steel - 11-Space68Swaged Stainless Steel - 7-Space69Heavy Duty Steel70H.D. Steel - Design Criteria71
Swaged Stainless Steel - 7-Space 69 Heavy Duty Steel 70 H.D. Steel - Design Criteria 71
Heavy Duty Steel 70 H.D. Steel - Design Criteria 71
H.D. Steel - Design Criteria71
H.D. Steel - Design Criteria71
IID W-11-1 Ct1 W C
H.D. Welded Steel - W Series72-73
H.D. Welded Steel - 38 Series & Load Tables74-75
H.D. Welded Steel - 30 Series & Load Tables76-77
H.D. Welded Steel - 22 Series & Load Tables78-79
H.D. Welded Steel - 19 Series & Load Tables80-81
H.D. Welded Steel - 15 Series & Load Tables82-83
H.D. Welded Steel - R Series84-85
Wheels n' Heels [®] Applications
Wheels n' Heels® Short Span Series87
Wheels n'Heels® H.D 8 Space - Short Span Series88
Wheels n' Heels® H.D 12 Space - Short Span Series89
Wheels n' Heels* H.D 12 Space - Short Span Series89 Wheels n' Heels* H.D Long Span Series 190
Wheels n' Heels® H.D Long Span Series 190
Wheels n' Heels* H.D Long Span Series 190 Wheels n' Heels* H.D 15 Space - Long Span Series 191
Wheels n' Heels* H.D Long Span Series 1
Wheels n' Heels* H.D Long Span Series 1
Wheels n' Heels* H.D Long Span Series 1 90 Wheels n' Heels* H.D 15 Space - Long Span Series 1 91 Wheels n' Heels* H.D 23 Space - Long Span Series 1 92 Wheels n' Heels* Long Span Series 2 93-95 Fabrication Anchoring Devices 96 Standard Practices 97
Wheels n' Heels* H.D Long Span Series 1
Wheels n' Heels* H.D Long Span Series 1 90 Wheels n' Heels* H.D 15 Space - Long Span Series 1 91 Wheels n' Heels* H.D 23 Space - Long Span Series 1 92 Wheels n' Heels* Long Span Series 2 93-95 Fabrication 96 Standard Practices 97 Specific Information 98 ADA Guidelines 99
Wheels n' Heels* H.D Long Span Series 1 90 Wheels n' Heels* H.D 15 Space - Long Span Series 1 91 Wheels n' Heels* H.D 23 Space - Long Span Series 1 92 Wheels n' Heels* Long Span Series 2 93-95 Fabrication 96 Standard Practices 97 Specific Information 98 ADA Guidelines 99 Nomenclature and Vocabulary 100
Wheels n' Heels* H.D Long Span Series 1
Wheels n' Heels* H.D Long Span Series 1 90 Wheels n' Heels* H.D 15 Space - Long Span Series 1 91 Wheels n' Heels* H.D 23 Space - Long Span Series 1 92 Wheels n' Heels* Long Span Series 2 93-95 Fabrication Anchoring Devices 96 Standard Practices 97 Specific Information 98 ADA Guidelines 99 Nomenclature and Vocabulary 100 Pressure Locked Grating 101 Custom Fabrication 102-104
Wheels n' Heels* H.D Long Span Series 1 90 Wheels n' Heels* H.D 15 Space - Long Span Series 1 91 Wheels n' Heels* H.D 23 Space - Long Span Series 1 92 Wheels n' Heels* Long Span Series 2 93-95 Fabrication Anchoring Devices 96 Standard Practices 97 Specific Information 98 ADA Guidelines 99 Nomenclature and Vocabulary 100 Pressure Locked Grating 101 Custom Fabrication 102-104 Standard Installation Clearances 105
Wheels n' Heels* H.D Long Span Series 1 90 Wheels n' Heels* H.D 15 Space - Long Span Series 1 91 Wheels n' Heels* H.D 23 Space - Long Span Series 1 92 Wheels n' Heels* Long Span Series 2 93-95 Fabrication Anchoring Devices 96 Standard Practices 97 Specific Information 98 ADA Guidelines 99 Nomenclature and Vocabulary 100 Pressure Locked Grating 101 Custom Fabrication 102-104 Standard Installation Clearances 105 Grating Tolerances 106-107
Wheels n' Heels* H.D Long Span Series 190Wheels n' Heels* H.D 15 Space - Long Span Series 191Wheels n' Heels* H.D 23 Space - Long Span Series 192Wheels n' Heels* Long Span Series 293-95Fabrication96Anchoring Devices96Standard Practices97Specific Information98ADA Guidelines99Nomenclature and Vocabulary100Pressure Locked Grating101Custom Fabrication102-104Standard Installation Clearances105
Wheels n' Heels* H.D Long Span Series 1 90 Wheels n' Heels* H.D 15 Space - Long Span Series 1 91 Wheels n' Heels* H.D 23 Space - Long Span Series 1 92 Wheels n' Heels* Long Span Series 2 93-95 Fabrication 96 Anchoring Devices 96 Standard Practices 97 Specific Information 98 ADA Guidelines 99 Nomenclature and Vocabulary 100 Pressure Locked Grating 101 Custom Fabrication 102-104 Standard Installation Clearances 105 Grating Tolerances 106-107 Stair Tread Tolerances 108 Welding Standards 109-110
Wheels n' Heels* H.D Long Span Series 1 90 Wheels n' Heels* H.D 15 Space - Long Span Series 1 91 Wheels n' Heels* H.D 23 Space - Long Span Series 1 92 Wheels n' Heels* Long Span Series 2 93-95 Fabrication 96 Anchoring Devices 96 Standard Practices 97 Specific Information 98 ADA Guidelines 99 Nomenclature and Vocabulary 100 Pressure Locked Grating 101 Custom Fabrication 102-104 Standard Installation Clearances 105 Grating Tolerances 106-107 Stair Tread Tolerances 108 Welding Standards 109-110 Resources
Wheels n' Heels* H.D Long Span Series 1 90 Wheels n' Heels* H.D 15 Space - Long Span Series 1 91 Wheels n' Heels* H.D 23 Space - Long Span Series 1 92 Wheels n' Heels* Long Span Series 2 93-95 Fabrication 96 Anchoring Devices 96 Standard Practices 97 Specific Information 98 ADA Guidelines 99 Nomenclature and Vocabulary 100 Pressure Locked Grating 101 Custom Fabrication 102-104 Standard Installation Clearances 105 Grating Tolerances 106-107 Stair Tread Tolerances 108 Welding Standards 109-110 Resources 11 Glossary 111
Wheels n' Heels* H.D Long Span Series 1 90 Wheels n' Heels* H.D 15 Space - Long Span Series 1 91 Wheels n' Heels* H.D 23 Space - Long Span Series 1 92 Wheels n' Heels* Long Span Series 2 93-95 Fabrication 96 Anchoring Devices 96 Standard Practices 97 Specific Information 98 ADA Guidelines 99 Nomenclature and Vocabulary 100 Pressure Locked Grating 101 Custom Fabrication 102-104 Standard Installation Clearances 105 Grating Tolerances 106-107 Stair Tread Tolerances 108 Welding Standards 109-110 Resources

ALUMINUM FEATURES & BENEFITS

Aluminum Provides a Unique Combination of Properties

...which makes it one of the most versatile engineering & construction materials available today!!

As a natural resource, aluminum is our most abundant metallic element. It's light weight mass (about a third the weight of copper or steel), unmatched strength-to-weight ratio and excellent corrosion resistance under the majority of service conditions makes it an excellent material for the manufacturing of bar grating.

Aluminum can be recycled and as a result, makes it an environmentally friendly material unlike some other grating material. Aluminum is durable and will offer years of service without showing wear or decay. It is also nontoxic so it can be easily cleaned and does not absorb bacteria sustaining particles. As a result it is a good candidate for food processing facilities. The material is also resilient; it can deflect under loads and then spring back.

All these attributes make aluminum grating an ideal solution for many special grating applications such as: sewage and waste water treatment plants, off-shore drilling rigs, the chemical process industry, the paper mill industry and marine superstructure applications. Because of its natural attractiveness, aluminum grating is also used in many architectural and commercial applications including sun screens, ceiling tiles, vent grilles, fencing, building facades, fountains, nature and wildlife walkways, and entranceways.

Aluminum is the "Lightweight Champion" ...Here are the Reasons Why:

- Aluminum is our Most Abundant Metallic Element
- Aluminum has Excellent Corrosion Resistance
- Aluminum has High Strength-to-Weight Ratio
- Aluminum can be Customized in the Field
- Aluminum can be Easily Recycled

- Aluminum is Naturally Attractive
- Aluminum is Light Weight
- Aluminum is Non-Toxic
- Aluminum is Resilient
- Aluminum is Versatile
- Aluminum is Durable

ALUMINUM PRODUCTS

Aluminum Rectangular, I Bar and LITEBAR.

SG Series - SGI Series - SGLi Series

A type of pressure locked grating made by permanently attaching cross bars to bearing bars through a pressure applied swaging process. Bearing bars are either rectangular or "I" shaped and range in size from 1" through $2^{1/2}$ ". Both Rectangular Bar and I-Bar are offered in $1^{3/16}$ " and $1^{5/16}$ " spacings, as well as ADA (July 1991) compliant spacings. Cross bars are available on 4" and 2" centers. A serrated surface (rectangular bar) or striated surface(I-Bar) is available for skid resistance.

Aluminum Flush Top - SGF Series

A type of pressure locked grating in which the cross bars are in the same plane relative to the top surface of the grating. Bearing bar sizes range from 1" x $\frac{1}{6}$ " through $2\frac{1}{2}$ " x $\frac{1}{6}$ " in $\frac{1}{4}$ " increments. Bearing bar spacing of $1\frac{1}{6}$ ", $\frac{1}{6}$ ", $\frac{1}{6}$ ", $\frac{1}{6}$ ", $\frac{1}{6}$ " and $\frac{1}{6}$ " c.c. and cross bar spacing of 4" or 2" are available. Where skid resistance is desired, a serrated surface can be provided. ALUMINUM FLUSH TOP is available in spacings which provide a $\frac{1}{6}$ " or $\frac{1}{6}$ " opening in conformance with provisions of the Americans With Disabilities Act (July 1991) for grating products.

Aluminum Dove Tail - ADT Series

A type of pressure locked grating whereby bearing bars and cross bars are precision slotted, assembled in egg-crate fashion, and hydraulically pressed together to form a panel grid. Bearing bars range from 1" x 1/8" through 21/2" x 3/16" in 1/4" increments. Grating spacings for Aluminum Dove Tail include the standards, as well as the ADA (July 1991) compliant spacings. Many engineers prefer the bi-directional, rectilinear look and feel of Aluminum Dove Tail grating.

Aluminum Riveted - AR Series

A type of aluminum grating which combines straight bearing bars and bent connecting bars riveted together at their contact points. Riveted grating, although being the oldest style of industrial footwalk, is still the choice of many engineers due to its reliability and durability. All popular sizes and spacings of riveted grating are manufactured by Ohio Gratings with an emphasis on quality and service.

Aluminum Plank

A type of aluminum grating which is available in 6" wide sections, and either plain sided or interlocking. Plank can be provided in sections up to 26' 0" in length, or fabricated per plans and specs. Plank grating is available unpunched as an economical and structurally superior substitute for aluminum checkerplate, or with a variety of punch/patterns.

ALUMINUM DESIGN CRITERIA

The tables of safe loads which follow have been computed using the following design parameters:

U = Uniform Load - lbs/ft²

C = Concentrated Load – lbs/ft of grating width

S = Section Modulus – in³/ft of grating width

I = Moment of Inertia – in⁴/ft of grating width

L = Simple Clear Span - feet

D = Deflection - inches

E = Modulus of Elasticity (10,000,000 psi)

F = Allowable Bending Stress (12,000 psi) – See note below.

M = Bending Moment

Design Service

Available at no charge to the specifying architect/engineer or fabricator, is access to a computer program which provides uniform load and deflection (actual or fraction of span) analysis of grating products. Just call, write or fax your design criteria – loading, span, allowable deflection, or grating size desired – and we will provide you with the information you require.

DEF	LOAD	DEFLE DEFLE	CTION	ET. OF WIDTH
	Uniform Load		Concentrated Load	
Step 1. Determine M:	$\mathbf{M} = \frac{FS}{12}$		$\mathbf{M} = \frac{FS}{12}$	
Step 2. Determine U or C:	$U = \frac{8M}{L^2}$		$\mathbf{C} = \frac{4M}{L}$	
Step 3. Check D*:	$D = \frac{5UL (L \times 12)^3}{384 EI}$		$\mathbf{D} = \frac{C (L \times 12)^3}{48 EI}$	

^{*}Deflection should be limited to 1/4" under 100# uniform load to afford pedestrian comfort.

NOTE: Quite often there is some question as to whether alloy 6063-T6 or 6061-T6 should be the preferred alloy for grating products. The design of aluminum grating for pedestrian loads is deflection limited, rather than strength limited. Although al-

loy 6061-T6 is stronger than alloy 6063-T6, the Modulus of Elasticity for both alloys is the same: 10,000,000 psi. As a result, equal loads will produce the same deflection, provided, of course that the yield strength is not exceeded.

7

Aluminum Grating is best suited for use in conjunction with pedestrian traffic, and for very light, rubber pneumatic tired rolling traffic (carts, dollies and hand trucks). For other rolling loads (forklifts, cars, trucks, etc.) see the Heavy Duty Steel Grating section, page 73.

Information of a technical nature contained herein is intended only for evaluation by technically skilled persons, with any use thereof to be at their independent discretion and risk. Such information is reliable when evaluated in the proper manner under conditions as described herein. Ohio Gratings, Inc. shall have no responsibility or liability for results obtained or damages resulting from improper evaluation or use.

ALUMINUM RECTANGULAR BAR

SG SERIES

PRODUCT SPECIFICATION GUIDE

How to Specify:

The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for Construction Specifications Canada (CSC) and the Technical Documents Committee of Construction Specifications Institute (CSI) for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating).

2. Aluminum: ASTM B221, Aluminum Alloy, Extruded Bars, Rods, Wire, Shapes and Tubing.

B.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners. B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

PART 2: PRODUCT...

1. Grating: Aluminum Rectangular Bar SG Series by Ohio Gratings, Inc., or approved equal.

Serrated Surface 2. Bearing Bars: Rectangular Bar on 13/16" centers maximum.

(Note: Other spacings may be specified at the discretion of the architect/engineer.) 3. Cross Bars: Locked at right angles to bearing bars at a maximum of 4" on center. (Note: 2" cross bar centers may be speci-

fied at the discretion of the architect /engineer.) 4. Surface: Plain. (Note: A serrated surface may be specified for maximum skid resistance.)

5. Loading: Grating to carry a pedestrian loading equal to a uniform load of 100# per square foot over the required clear span with deflection not to exceed 1/4". (Note: Alternate loading requirements may be specified at the discretion of the architect /engineer.)

6. Finish: Mill finished.

Plain Surface

7. Fabrication and Tolerances: In accordance with the NAAMM Metal Bar Grating Manual.

PART 3: EXECUTION...

3.1 Installation

A. Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.

B. Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.

C. Cutting, Fitting and Placement.

1. Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.

2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.

3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.

4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar

5. Utilize standard panel widths wherever possible.

D. Protection of Aluminum from Dissimilar Materials:

1. Where aluminum surfaces come into contact with dissimilar metals, surfaces shall be kept from direct contact by painting the dissimilar metal with one coat of bituminous paint or other approved insulating material.

2. Where aluminum surfaces come into contact with dissimilar materials such as concrete, masonry or lime mortar, exposed aluminum surfaces shall be painted with one coat of bituminous paint or other approved insulating material.


3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

Grating Profiles Available...

SG Series - Aluminum Rectangular Bar

All profiles shown below are also available with 2" cross bar centers. Product numbers would be 19-SG-2, 15-SG-2, 11-SG-2 and 7-SG-2

*Note: Conforms with the spacing requirements of ADA (July 1991) when installed with the elongated opening perpendicular to the dominant direction of travel See ADA Guidelines

ALUMINUM RECTANGULAR BAR

SG SERIES

Product Applications...

The most widely used aluminum pressure locked grating is the rectangular bar SG series. The square cross bars are assembled through punched diamond shaped holes in rectangular bearing bars and are permanently locked into place by a swaging process. It provides clean crisp lines using recessed cross bar and eliminates the need for any type of welding to form the panels. By using the

most modern technology available, swaged bar grating allows for a variety of spacings including those that conform to the "Americans with Disabilities Act". Because of its aesthetic appeal and the ability to meet tight tolerances, this product is often used for architectural applications. Slip resistant surfaces are available.

◆ 4th Street Live

- Louisville, KY

▲ Dept. of Workers Compensation

- Columbus, OH

▲ LeMay WWTP
- St. Louis, MO

SGI SERIES

PRODUCT SPECIFICATION GUIDE

How to Specify: The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for Construction Specifications Canada (CSC) and the Technical Documents Committee of Construction Specifications Institute (CSI) for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

- A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating).

 2. Aluminum: ASTM B221, Aluminum Alloy, Extruded Bars, Rods, Wire, Shapes and Tubing.
- B.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work

1.3 Submittals

- A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners.
- B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

PART 2: PRODUCT...

1. Grating: Aluminum I-Bar SGI Series by Ohio Gratings, Inc., or approved equal.

2. Bearing Bars: I-Bar section with 1/4" flanges on a maximum of 13/16 centers. (Note: other spacings may be specified at the discretion of the architect /engineer.) 3. Cross Bars: Locked at right angles to bearing bars at a maximum of 4" on center. (Note: 2" 7-SGI-4

cross bar centers may be

specified at the discretion of

the architect /engineer.)

- 4. Surface: Flanges to have a striated surface. 5. Loading: Grating to carry a pedestrian loading egual to a uniform load of 100# per square foot over the required clear span with deflection not to exceed 1/4". (Note: alternate loading requirements may be specified at the discretion of the architect /engineer.)
- 6. Finish: Mill finished.
- 7. Fabrication and Tolerances: in accordance with the NAAMM Metal Bar Grating Manual.

PART 3: EXECUTION...

3.1 Installation

- A. Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.
- B. Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.
- C. Cutting, Fitting and Placement.
- 1. Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.
- 2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.
- 3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction.

Where economy is a major consideration, the I-Bar SGI Series offers a popular and reasonably priced alternative to rectangular bar grating. Extruded I-Bar sections have the same load carrying capacity with less weight per square foot than rectangular bars. The striated top and bottom flanges provide a "built-in" skid resistance feature without the added cost of serrating.

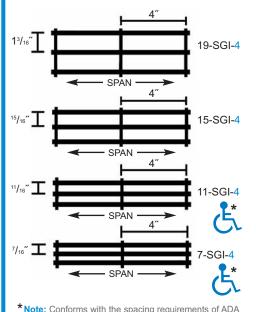
Note: The .031" striations top and bottom are in addition to the standard grating depth. For example, a 1" I-Bar section has an overall depth of 1.062'

Cutouts for all piping 4" or less shall be made in the field.

- 4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.
- 5. Utilize standard panel widths wherever possible.
 - D. Protection of Aluminum from Dissimilar Materials:

1. Where aluminum surfaces come into contact with dissimilar metals, surfaces shall be kept End View from direct contact by painting the dissimilar metal with one coat of bituminous paint or other

approved insulating material.


2. Where aluminum surfaces come into contact with dissimilar materials such as concrete, masonry or lime mortar, exposed aluminum surfaces shall be painted with one coat of bituminous paint or other approved insulating material.

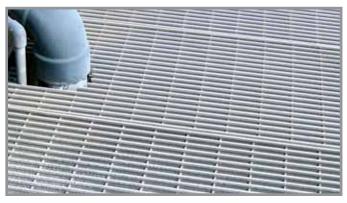
3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

Grating Profiles Available... SGI Series - Aluminum I-Bar

All profiles shown below are also available with 2" cross bar centers. Product numbers would be 19-SGI-2, 15-SGI-2, 11-SGI-2 and 7-SGI-2

(July 1991) when installed with the elongated opening perpendicular to the dominant direction of travel. See ADA Guidelines


ALUMINUM I- BAR

SGI SERIES

Product Applications...

The I-Bar SGI Series offers a popular and reasonably priced alternative to rectangular bar grating. Extruded I-Bar sections have the same load carrying capacity with

less weight per square foot than rectangular bars. The striated top and bottom flanges provide a "built-in" skid resistance feature without the added cost of serration.

◆ Airport

- Minneapolis, MN

▲ WWTP

- Youngstown, OH

▲ Steps
- Corning, NY

ALUMINUM FLUSH TOP

SGF SERIES

PRODUCT SPECIFICATION GUIDE

How to Specify:

The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for Construction Specifications Canada (CSC) and the Technical Documents Committee of Construction Specifications Institute (CSI) for specifications serving the construction industry. These specifications are intend-

(CSI) for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

- A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating). 2. Aluminum: ASTM B221, Aluminum Alloy, Extruded Bars, Rods, Wire, Shapes and Tubing.
- **B.**1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners.

B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

PART 2: PRODUCT...

 Grating: ALUMINUM FLUSH TOP SGF Series by Ohio Gratings, Inc., or approved equal.

> Serrated Surface

cross bar centers may be specified at the discretion of the architect/engineer.)

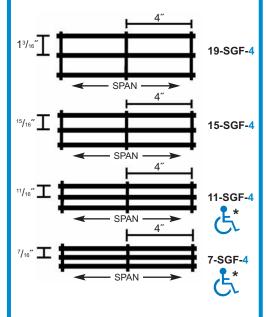
- 4. Surface: Plain. (Note: A serrated surface may be specified for maximum skid resistance.)
- 5. Loading: Grating to carry a pedestrian loading equal to a uniform load of 100# per square foot over the required clear span with deflection not to exceed 1/4". (Note: Alternate loading requirements may be specified at the discretion of the architect /engineer.)
- 6. Finish: Mill finished.
- 7. Fabrication and Tolerances: In accordance with the NAAMM Metal Bar Grating Manual.

PART 3: EXECUTION...

3.1 Installation

- **A.** Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.
- **B.** Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.
- C. Cutting, Fitting and Placement.
- 1. Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.
- Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.
- 3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.
- All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.
 Utilize standard panel widths wherever possible.

- **D.** Protection of Aluminum from Dissimilar Materials:
- 1. Where aluminum surfaces come into contact with dissimilar metals, surfaces shall be kept from direct contact by painting the dissimilar metal with one coat of bituminous paint or other approved insulating material.
- 2. Where aluminum surfaces come into contact with dissimilar materials such as concrete, masonry or lime mortar, exposed aluminum surfaces shall be painted with one coat of bituminous paint or other approved insulating material.


3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

Grating Profiles Available...

SGF Series - Aluminum Rectangular Bar

All profiles shown below are also available with 2" cross bar centers. Product numbers would be 19-SGF-2, 15-SGF-2, 11-SGF-2 and 7-SGF-2

*Note: Conforms with the spacing requirements of ADA (July 1991) when installed with the elongated opening perpendicular to the dominant direction of travel.

See ADA Guidelines

ALUMINUM FLUSH TOP

SGF SERIES

Product Applications...

Mounting Detail

Maximum walking surface, cosmetic appeal, economy of shop fabrication and ease of field alteration make the aluminum flush top series the premier choice when pressure locked aluminum grating is being specified. This series offers a type of pressure locked grating in which the cross bars are in the same plane relative to the top surface of the grating. For those areas that receive a great deal of pedestrian traffic, our 1/4" opening 7-SGF-4 close space product is available which conforms with the provisions of the Americans with Disabilities Act. Slip resistant surfaces are available. Flush top grating is also suitable for projects in the architectural market including screens, grilles and fences.

◀ Fence Detail

International Airport ▲
- Minneapolis - St. Paul, MN

Toll Free: 800-321-9800

ALUMINUM DOVE TAIL

ADT SERIES

PRODUCT SPECIFICATION GUIDE

How to Specify:

The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for Construction Specifications Canada (CSC) and the Plain Surface Technical Documents Committee of Construction Specifications Institute (CSI) for appointing against the construction base.

(CSI) for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

- A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating). 2. Aluminum: ASTM B221, Aluminum Alloy, Extruded Bars, Rods, Wire, Shapes and Tubing.
- **B.1**. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners. B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

PART 2: PRODUCT...

Grating: Aluminum Dove Tail ADT Series by Ohio Gratings, Inc., or

approved equal.
2. Bearing Bars:
Rectangular
Bar on 13/16"

Serrated
Surface

centers maximum with dove tail slots to accept cross

bars. (Note: Other spacings may be specified at the discretion of the architect /engineer.)
3. Cross Bars:
Rectangular bars, slotted and locked in dove tail fashion at right angles, and in the same

plane as, the top surface of bearing bars. Spacing: 4" on center. (Note: 2" cross bar centers may be specified at the discretion of the architect /engineer.)

4. Surface: Plain (Note: A serrated surface may be specified at the discretion of the architect /engineer.)

5. Loading: Grating to carry a pedestrian loading equal to a uniform load of 100# per square foot over the required clear span with deflection not to exceed 1/4". (Note: alternate loading requirements may be specified at the discretion of the architect /engineer.)

6. Finish: Mill finished.

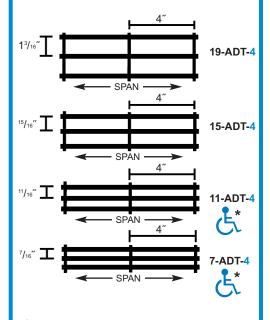
7. Fabrication and Tolerances: in accordance with the NAAMM Metal Bar Grating Manual.

PART 3: EXECUTION...

3.1 Installation

- **A.** Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.
- **B.** Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.
- C. Cutting, Fitting and Placement.
- 1. Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.
- 2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.
- 3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.
- 4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.
- 5. Utilize standard panel widths wherever possible.

- **D.** Protection of Aluminum from Dissimilar Materials:
- 1. Where aluminum surfaces come into contact with dissimilar metals, surfaces shall be kept from direct contact by painting the dissimilar metal with one coat of bituminous paint or other approved insulating material.
- 2. Where aluminum surfaces come into contact with dissimilar materials such as concrete, masonry or lime mortar, exposed aluminum surfaces shall be painted with one coat of bituminous paint or other approved insulating material.


3.2 Grating Attachment

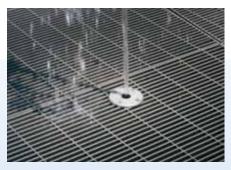
Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

Grating Profiles Available...

ADT Series - Aluminum Dove Tail

All profiles shown below are also available with 2" cross bar centers. Product numbers would be 19-ADT-2, 15-ADT-2, 11-ADT-2 and 7-ADT-2

*Note: Conforms with the spacing requirements of ADA (July 1991) when installed with the elongated opening perpendicular to the dominant direction of travel. See ADA Guidelines


ALUMINUM DOVE TAIL

ADT SERIES

Product Applications...

Traditionally designed, aluminum Dove Tail slot pressure locked grating offers a smooth, clean line of a flush top rectangular cross bar. Bearing bars and cross bars are precision slotted, assembled in egg-crate fashion and hydraulically pressed together to form a tightly locked, rigidly stable panel grid. This grating is available in spacings, which provide a 1/4" or 1/2" opening in conformance with provisions for the "American With Disabilities Act" (July 1991). These products are part of our Grater Access line and are available with cross bars on 2" or 4" centers. This is also a popular style in the architectural community because of the aesthetic eye appeal of the product and the ability to maintain tighter tolerances. This style is also available in steel and stainless steel. Slip resistant surfaces are available.

■ Waterfront (detail) - Louisville, KY

▲ Alum Creek (detail) - Delaware, OH

▲ Alum Creek - Delaware, OH

SGLi SERIES

PRODUCT SPECIFICATION GUIDE

How to Specify:

The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for Construction Specifications Canada (CSC) and the Technical Documents Committee of Construction 7-SGLi-4 Specifications Institute (CSI) for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit

the specific conditions of the application in

PART 1: GENERAL...

1.1 Scope

question.

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating). 2. Aluminum: ASTM B221, Aluminum Alloy, Extruded Bars, Rods, Wire, Shapes and Tubing.

B.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners. B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

PART 2: PRODUCT...

 Grating: Aluminum Lite I-Bar SGLi Series by Ohio Gratings, Inc., or approved equal.
 Bearing Bars: I-Bar section with 3/16" flanges on a maximum of 13/16" centers. Note: other spacings may be specified at the discretion of the architect /engineer.

3. Cross Bars: Locked at right angles to bearing

bars at a maximum of

4" on center. (Note: 2" cross

bar centers may be specified at the discretion of the architect /engineer.)
4. Surface: Flanges to have a striated surface.
5. Loading: Grating to carry a pedestrian loading equal to a uniform load of 100# per square

foot over the required clear span with deflection not to exceed 1/4". (Note: alternate loading requirements may be specified at the discretion of the architect /engineer.)

6. Finish: Mill finished.

7. Fabrication and Tolerances: in accordance with the NAAMM Metal Bar Grating Manual.

PART 3: EXECUTION...

3.1 Installation

A. Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.

B. Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.

C. Cutting, Fitting and Placement.

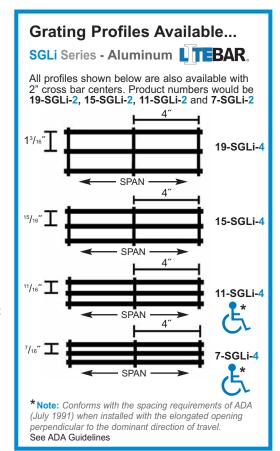
1. Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.

2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.

3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.

4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.

5. Utilize standard panel widths wherever possible.


D. Protection of Aluminum from Dissimilar Materials:

1. Where aluminum surfaces come into contact with dissimilar metals, surfaces shall be kept from direct contact by painting the dissimilar metal with one coat of bituminous paint or other approved insulating material.

2. Where aluminum surfaces come into contact with dissimilar materials such as concrete, masonry or lime mortar, exposed aluminum surfaces shall be painted with one coat of bituminous paint or other approved insulating material.

3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

ALUMINUM LIBAR.

SGLi SERIES

APPLICATIONS:

- Walkways
- Entranceways
- Vents / Air Grilles
- Ceiling Tiles
- Sun Screens
- Material Screens
- Security Screens

BENEFITS:

- 20% lighter
- Reduces Freight Cost
- Meets ADA Requirements
- More Economical
- Meets NAAMM Standards
- Easy Field Installation

THE LIGHTWEIGHT CHAMPION

ALUMINUM TEBAR.

19 & 15 SPACE

Load Table 19 SGLi-4 • 19 SGLi-2

Bar Size (inches)	Ped Span (inches)	Wt. Lbs. (sq. ft.)	Sec.Prop Sx, in³- lx, in⁴		1'-0"	1'-6"	2'-0"	2'-6"	3'-0"	3'-6"	4'-0"	4'-6"	5'-0"	5'-6"	6'-0"	6'-6"	7'-0"	8'-0"
3/4"	33	1.36	.119	U D	954 .043	424 .098	238 .173	153 .271	106 .39	78 .531	60 .694							
3/4	33	1.50	.050	C	477 .035	318 .078	238 .139	191 .217	159 .312	136 .425	119 .555				%	Open <i>A</i>	Area	
1"	40	1.66	.211	U D	1657 .034	737 .076	414 .135	265 .212	184 .305	135 .415	104 .542	82 .686					0%	
'	40	1.00	.112	C D	829 .027	552 .061	414 .108	331 .169	276 .244	237 .332	207 .433	184 .548			2"	cc 7	7%	
1-1/4"	48	1.97	.339	U D	2538 .027	1128 .062	635 .11	406 .171	282 .247	207 .336	159 .439	125 .556	102 .686					
1-1/4	40	1.91	.222	C D	1269 .022	846 .049	635 .088	508 .137	423 .198	363 .269	317 .351	282 .444	254 .549					
1-1/2"	54	2.27	.464	U D	3662 .023	1628 .052	916 .092	586 .144	407 .207	299 .282	229 .369	181 .466	146 .576	121 .697				
1-1/2	34	2.21	.363	C D	1831 .018	1221 .041	916 .074	732 .115	610 .166	523 .226	458 .295	407 .373	366 .461	333 .557				
2"	67	2.05	.845	U D	6760 .017	3004 .039	1690 .070	1082 .109	751 .157	552 .214	423 .279	334 .354	180 .291	223 .528	188 .629	160 .738	138 .856	106 1.118
	67	2.95	.871	C D	3380 .014	2253 .031	1690 .056	1352 .087	1127 .126	966 .171	845 .224	751 .283	450 .232	615 .423	563 .503	520 .590	483 .685	423 0.894
2-1/2"	79	2.50	1.322	U D	10577 .014	4701 .032	2644 .056	1692 .088	1175 .126	863 .172	661 .225	522 .285	423 .351	350 .425	294 .506	250 .594	216 .689	165 0.899
Z - 1/Z	79	3.59	1.694	C D	5288 .011	3526 .025	2644 .045	2115 .070	1763 .101	1511 .138	1322 .180	1175 .228	1058 .281	962 .340	881 .405	814 .475	755 .551	661 0.719

[►] See Panel Width Charts on page 21

Load Table 15 SGLi-4 • 15 SGLi-2

Bar Size (inches)	Ped Span (inches)	Wt. Lbs. (sq. ft.)	Sec.Prop Sx, in³- lx, in⁴		1'-0"	1'-6"	2'-0"	2'-6"	3'-0"	3'-6"	4'-0"	4'-6"	5'-0"	5'-6"	6'-0"	6'-6"	7'-0"	8'-0"
3/4"	35	1.62	.151	U D	1208 .043	537 .098	302 .173	193 .271	134 .39	99 .531	76 .694							
3/4	33	1.02	.063	C D	604 .035	403 .078	302 .139	242 .217	201 .312	173 .425	151 .555				% (Open A	rea	
1"	43	2.00	.268	U D	2099	933 .076	525 .135	336 .212	233 .305	171 .415	131 .542	104 .686			4"	cc 76	6%	
'	40	2.00	.142	C D	1050 .027	700 .061	525 .108	420 .169	350 .244	300 .332	262 .433	233 .548			2"	cc 73	3%	
1-1/4"	50	2.38	.429	U D	3215 .027	1429 .062	804 .11	514 .171	357 .247	.336	201 .439	159 .556	129 .686					
1-1/4	30	2.30	.282	C D	1608 .022	1072 .049	804 .088	643 .137	536 .198	459 .269	402 .351	357 .444	322 .549					
1-1/2"	57	2.77	.588	U D	4639 .023	2062 .052	1160 .092	742 .144	515 .207	379 .282	290 .369	229 .466	186 .576	153 .697				
1-1/2	31	2.11	.460	C D	2319 .018	1546 .041	1160 .074	928 .115	773 .166	663 .226	580 .295	515 .373	464 .461	422 .557				
o"	74	2.02	1.070	U D	8560 .017	3804 .039	2140 .070	1370 .109	951 .157	699 .214	535 .279	423 .354	180 .229	283 .528	238 .629	203 .738	175 .856	134 1.118
2"	71	3.63	1.103	C D	4280 .014	2853 .031	2140 .056	1712 .087	1427 .126	1223 .171	1070 .224	951 .283	450 .184	778 .423	713 .503	658 .590	611 .684	535 .894
0.4/0"	0.4	4.45	1.675	U D	13398 .014	5954 .032	3349 .056	2144 .088	1489 .126	1094 .172	837 .225	662 .285	536 .351	443 .425	372 .506	317 .594	273 .689	209 .899
2-1/2"	84	4.45	2.145	C D	6699 .011	4466 .025	3349 .045	2680 .070	2233	1914 .138	1675 .180	1489 .228	1340 .281	1218 .340	1116 .405	1031 .475	957 .551	837 .719

[►] See Panel Width Charts on page 23

11 & 7 SPACE

Load Table 11 SGLi-4 • 11 SGLi-2

Bar Size (inches)	Ped Span (inches)	Wt. Lbs. (sq. ft.)	Sec.Prop Sx, in3 - Ix, in4		1'-0"	1'-6"	2'-0"	2'-6"	3'-0"	3'-6"	4'-0"	4'-6"	5'-0"	5'-6"	6'-0"	6'-6"	7'-0"	8'-0"
3/4"	38	2.06	.206	U	1648 .043	732 .098	412 .173	264 .271	183 .390	135 .531	103 .694			% Op	en Are	a		
3/4	36	2.00	.086	C D	824 .035	549 .078	412 .139	330 .217	275 .312	235 .425	206 .555			4" cc	_	_		
1"	46	2.58	.365	U D	2863 .034	1272 .076	716 .135	458 .212	318 .305	234 .415	179 .542	141 .686	115 .846	2" cc	66%			
'	40	2.30	.194	C	1431 .027	954 .061	716 .108	573 .169	477 .244	409 .332	358 .433	318 .548	286 .677					
1-1/4"	55	3.11	.585	U D	4385 .027	1949 .062	1096 .11	702 .171	487 .247	358 .336	274 .439	217 .556	175 .686	145 .83				
1-1/4	55	3.11	.384	C D	2192 .022	1462 .049	1096 .088	877 .137	731 .198	626 .269	548 .351	487 .444	438 .549	399 .664				
1-1/2"	62	2 62	.802	U D	6326 .023	2811 .052	1581 .092	1012 .144	703 .207	516 .282	395 .369	312 .466	253 .576	209 .697	176 .829	150 .973		
1-1/2	02	3.63	.627	C	3163 .018	2109 .041	1581 .074	1265 .115	1054 .166	904 .226	791 .295	703 .373	633 .461	575 .557	527 .663	487 .779		
0"		4.04	1.459	U D	11672 .017	5188 .039	2918 .070	1868 .109	1297 .157	953 .214	730 .279	576 .353	180 .168	386 .528	324 .628	276 .737	238 .855	182 1.117
2"	77	4.81	1.505	C	5836 .014	3891 .031	2918 .056	2334 .087	1945 .126	1667 .171	1459 .223	1297 .283	450 .135	1061 .422	973 .503	898 .590	834 .684	730 .893
2.4/2"	04	E 02	2.284	U D	18270 .014	8120 .032	4567 .056	2923 .088	2030 .126	1491 .172	1142 .225	902 .285	731 .351	604 .425	507 .506	432 .594	373 .689	285 .899
2-1/2"	91	5.92	2.925	C D	9135 .011	6090 .025	4567 .045	3654 .070	3045 .101	2610 .138	2284 .180	2030 .228	1827 .281	1661 .340	1522 .405	1405 .475	1305 .551	1142 .719

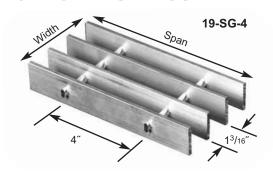
[►] See Panel Width Charts on page 25

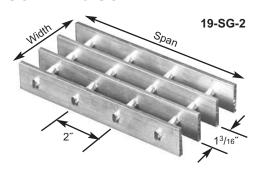
Load Table 7SGLi-4 • 7SGLi-2

Bar Size (inches)	Ped Span (inches)	Wt. Lbs. (sq. ft.)	Sec.Prop Sx, in3 - Ix, in4		1'-0"	1'-6"	2'-0"	2'-6"	3'-0"	3'-6"	4'-0"	4'-6"	5'-0"	5'-6"	6'-0"	6'-6"	7'-0"	8'-0"
3/4"	42	3.01	.323	U	2588 .043	1150 .097	647 .173	414 .271	288 .390	211 .531	162 .693	128 .877		% Op	en Are	a		
3/4	72	3.01	.134	C	1294 .035	863 .078	647 .139	518 .217	431 .312	370 .425	323 .555	288 .702		4" cc		_		
1"	51	3.83	.573	U D	4584 .034	2037 .076	1146 .136	733 .212	509 .305	374 .416	287 .543	226 .687	180 .833	2" cc	51%			
'	31	3.03	.304	C D	2292 .027	1528 .061	1146 .109	917 .170	764 .244	655 .332	573 .434	509 .550	450 .666					
1-1/4"	61	4.65	.920	U D	7360 .027	3271 .062	1840 .110	1178 .172	818 .247	601 .336	460 .439	363 .556	294 .687	243 .831	204 .989			
1-1/4	"	4.03	.603	C	3680 .022	2453 .049	1840 .088	1472 .137	1227 .198	1051 .269	920 .352	818 .445	736 .549	669 .665	613 .791			
1-1/2"	69	5.47	1.261	U D	10088 .023	4484 .052	2522 .092	1614 .144	1121 .207	824 .282	631 .369	498 .467	404 .576	333 .697	280 .830	239 .974		
1-1/2	09	5.47	.985	C D	5044 .018	3363 .041	2522 .074	2018 .115	1681 .166	1441 .226	1261 .295	1121 .373	1009 .461	917 .558	841 .664	776 .779		
2"	0.0	7 22	2.293	U D	18344 .017	8153 .039	4586 .070	2935 .109	2038 .157	1497 .214	1147 .279	906 .354	180 .107	606 .528	510 .629	434 .738	374 .856	287 1.117
	86	7.33	2.364	C D	9172 .014	6115 .031	4586 .056	3669 .087	3057 .126	2621 .171	2293 .223	2038 .283	450 .086	1668 .423	1529 .503	1411 .590	1310 .684	1147 .894
2.4/2"	404	0.07	3.589	U D	28709 .014	12760 .032	7177 .056	4594 .088	3190 .126	2344 .172	1794 .225	1418 .285	1148 .351	949 .425	797 .506	680 .594	586 .689	.899
2-1/2"	101	9.07	4.597	C D	14355 .011	9570 .025	7177 .045	5742 .070	4785 .101	4101 .138	3589 .180	3190 .228	2871 .281	2610 .340	2392 .405	2208 .475	2051 .551	1794 .719

[➤] See Panel Width Charts on page 27

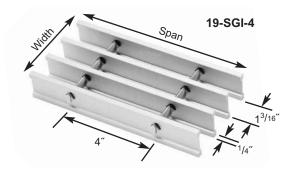
Products listed above conform with ADA Standards

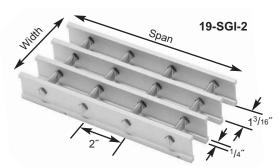



Toll Free: 800-321-9800

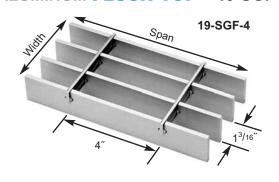
ALUMINUM PROFILES

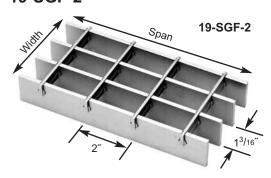
19 SPACE


ALUMINUM RECTANGULAR BAR - 19-SG-4 - 19-SG-2

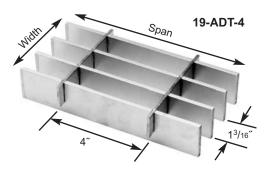


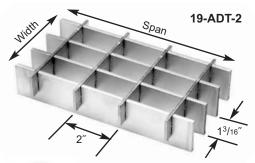
%	Open Ar	ea*
Bars	1/8″	³ /16″
4" cc	85%	80%
2" cc	81%	77%


ALUMINUM I-BAR - 19-SGI-4 • 19-SGI-2



% Oper	n Area*
4" cc	80%
2" cc	77%


ALUMINUM FLUSH TOP - 19-SGF-4 • 19-SGF-2



%	Open Ar	ea*
Bars	1/8″	³ /16″
4" cc	85%	80%
2" cc	81%	77%

ALUMINUM **DOVE TAIL** – 19-ADT-4 - 19-ADT-2

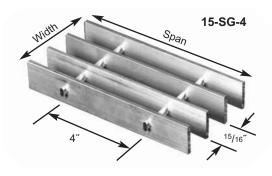
%	Open Ar	ea*
Bars	1/8″	³ /16″
4" cc	86%	81%
2" cc	84%	79%

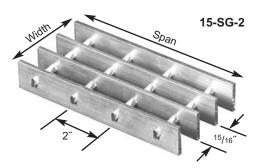
ALUMINUM LOAD TABLES

19 SPACE

Bar Size,	Ped	Wt.*	Sec. Prop							Clear	Span						
Inches	Span, Inches	Lbs. Sq. Ft.	Sx*, in ³ lx*, in ⁴		2′- 0″	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5′- 0″	5′- 6″	6′- 0″	6′- 6″	7′- 0″	8′- 0″	
			0.211	U	421	269	187	137									
1 x ¹ /8	39	1.71	0.211	D	0.144	0.225	0.324	0.439		U - S	Safe unifo	rm load i	n pounds/	sq. ft.			
1 × 70	33		0.105	С	421	337	281	241		C - S	afe conce	entrated lo	ad in nou	nde/ft are	nting width	1	
			0.103	D	0.115	0.180	0.259	0.353					-	nas/10. gro	iiiig widii		
1 x ³ /16		2.46	0.316	U	632	404	281	206	158	D-1	Deflection	in inches	S				
1 / /10	44	2.40	0.510	D	0.144	0.225	0.324	0.441	0.576								
I-Bar		1.99	0.158	С	632	505	421	361	316	Load	s and def	lections o	iven in th	is table a	re theoreti	ica1	
I-Dal		1.99	0.130	D	0.115	0.180	0.259	0.353	0.461				stress of			,	
			0.329	U	658	421	292	215	164					, 1			
1 ¹ /4 x ¹ /8		2.08	0.525	D	0.115	0.180	0.259	0.353	0.459		*Bas	ed on 10.1	05 bars/ft.	of grating	g width. Be	earing	
1 / 1 / 7	47		0.206	С	658	526	439	376	329		bars	13/16" c.c. A	dd .3 lbs./	sq. ft. for	19-SG-2.		
			0.200	D	0.092	0.144	0.208	0.282	0.369		bars 1 ³ / ₁₆ " c.c. Add .3 lbs./sq. ft. for 19-SG-2. Note: Grating for spans to the left of the heavy line have a deflection less than ¹ / ₄ " for uniform loads of						
1 ¹ /4 × ³ /16		3.01	0.493	U	987	632	439	322	247	195	100 1	bs./sa. ft. 7	This is the	maximum	deflection	to	
I /4 X /16	52	3.01	0.433	D	0.115	0.180	0.259	0.353	0.461	0.583	afford	d pedestria	n comfort	and can be	e exceeded	for	
I-Bar	02	2.34	0.308	С	987	789	658	564	493	439	other	types of lo	ad at the c	liscretion (of the engir	neer.	
I-Dai		2.34	0.300	D	0.092	0.144	0.207	0.282	0.368	0.467	is sho	own above	(pedestrian for each si) Span un ze of grat	der this cor ing. When	ldition	
			0.474	U	947	606	421	309	237	187	serra	ted gratin	g is specif	ied, the d	epth of gra	iting	
$1^{1}/2 \times ^{1}/8$	53	2.46	0.474	D	0.096	0.150	0.216	0.294	0.384	0.486					1/4" greate	r than	
1 /2 / /0	33	2.40	0.355	С	947	758	632	541	474	421	thats	shown in t	hese table	s.			
			0.555	D	0.077	0.120	0.173	0.235	0.307	0.389							
1 ¹ /2 x ³ /16		3.56	0.711	U	1421	909	632	464	355	281	227]					
1 72 X 7/16	59	3.30	0.711	D	0.096	0.150	0.216	0.294	0.384	0.487	0.599]					
LDan	33	0.70	0.533	С	1421	1137	947	812	711	632	568	1					
I-Bar		2.70	0.555	D	0.077	0.120	0.173	0.235	0.307	0.389	0.480	1					
431 31		4.12	0.967	U	1934	1238	860	632	484	382	309	256	215]			
$1^3/4 \times 3/16$	66	4.12	0.907	D	0.082	0.129	0.185	0.252	0.329	0.417	0.514	0.623	0.741	1			
LBook			0.846	С	1934	1547	1289	1105	967	860	774	703	645	1			
I-Bar		3.06	0.040	D	0.066	0.103	0.148	0.202	0.263	0.333	0.412	0.498	0.593	1			
2 31		1 60	1 262	U	2526	1617	1123	825	632	499	404	334	281	239			
2 x ³ /16	73	4.68	4.68	6X 1.26.3	D	0.072	0.113	0.162	0.221	0.288	0.364	0.450	0.544	0.649	0.760		
LD	, ,	0.40		С	2526	2021	1684	1444	1263	1123	1011	919	842	777			
I-Bar		3.43	1.203	D	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.436	0.518	0.608			
01/3/		5.24	1.599	U	3197	2046	1421	1044	799	632	512	423	355	303	261		
2 ¹ /4 x ³ /16	80	5.24	1.599	D	0.064	0.100	0.144	0.196	0.256	0.324	0.400	0.484	0.576	0.677	0.784		
1.5	00		4 700	С	3197	2558	2132	1827	1599	1421	1279	1163	1066	984	914	1	
I-Bar		3.75	1.798	D	0.051	0.080	0.115	0.157	0.205	0.259	0.320	0.387	0.461	0.541	0.628	1	
a1, 3,		F 70	4.074	U	3947	2526	1754	1289	987	780	632	522	439	374	322	247	
$2^{1}/2 \times {}^{3}/16$	87	5.79	1.974	D	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.436	0.519	0.609	0.705	0.923	
	87			С	3947	3158	2632	2256	1974	1754	1579	1435	1316	1215	1128	987	
I-Bar		4.15	2.467	D	0.046	0.072	0.104	0.141	0.184	0.233	0.288	0.348	0.415	0.487	0.565	0.737	

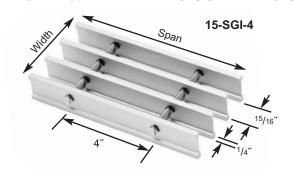
Panel Width Chart (in.) - 19-SG-4 19-SG-2, 19-SGLi-4 19-SGLi-2, 19-SGF-4 19-SGF-2, 19-ADT-2

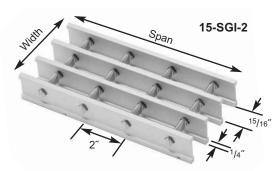

Dimensions Are Out-to-Out of Bearing Bars**															
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
3/16" Bars	1 ³ /8	2 ⁹ /16	3 ³ /4	4 ¹⁵ /16	6 ¹ /8	7 ⁵ /16	8 ¹ / ₂	9 ¹¹ /16	10 ⁷ /8	12 ¹ /16	13 ¹ /4	14 ⁷ /16	15 ⁵ /8	16 ¹³ /16	18
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
3/16" Bars 193/16 203/8 219/16 223/4 2315/16 251/8 265/16 271/2 2811/16 297/8 311/16 321/4 337/16 345/8 3513/16															
**Add ¹ /4" for extend	ded cross	bars. De	educt ¹ /16	" for ¹ /8"	bearing l	oars. Sta	ndard pa	nel width	hs indicat	ted in blu	e.				


Panel Width	Char	t (in.) -	19-SG	il-4 19-	SGI-2	Dim	nensio	ns Are	Out-to-	Out of	Bearin	ng Bars	s**		
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
¹ /4" Flange	1 ⁷ /16	2 ⁵ /8	3 ¹³ /16	5	6 ³ /16	73/8	8 ⁹ /16	93/4	10 ¹⁵ / ₁₆	12 ¹ /8	13 ⁵ /16	14 ¹ / ₂	15 ¹¹ / ₁₆	16 ⁷ /8	18 ¹ / ₁₆
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
¹ /4" Flange	19 ¹ /4	20 ⁷ /16	21 ⁵ /8	22 ¹³ /16	24	25 ³ /16	26 ³ /8	27 ⁹ /16	28 ³ / ₄	29 ¹⁵ /16	31 ¹ /8	32 ⁵ /16	33 ¹ / ₂	34 ¹¹ /16	35 ⁷ /8

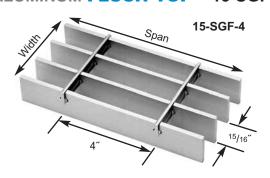
ALUMINUM PROFILES

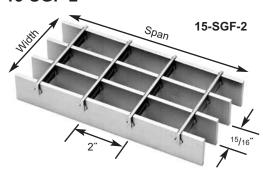
15 SPACE


ALUMINUM RECTANGULAR BAR - 15-SG-4 • 15-SG-2

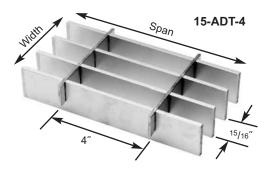


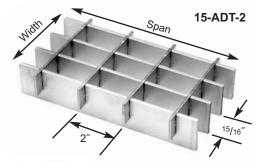
% Oper	n Area*
4" cc	76%
2" cc	73%


ALUMINUM I-BAR - 15-SGI-4 • 15-SGI-2



% Open Area*							
4" cc	76%						
2" cc	73%						


ALUMINUM FLUSH TOP - 15-SGF-4 • 15-SGF-2



% Ope	n Area*
4" cc	76%
2" cc	73%

ALUMINUM **DOVE TAIL** – 15-ADT-4 • 15-ADT-2

% Ope	n Area*
4" cc	77%
2" cc	75%

ALUMINUM LOAD TABLES

15 SPACE

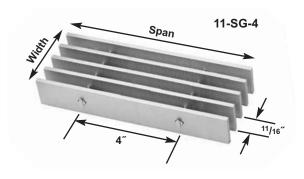
Bar Size.	Ped	Wt.* Lbs.	Sec. Prop							Clear	Span						
Inches	Span, Inches	Sq. Ft.	Sx*, in³' lx*, in⁴		2′- 0″	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5′- 0″	5′- 6″	6′- 0″	6′- 6″	7′- 0″	8′- 0″	
4 3,		3.06	0.400	U	800	512	356	261	200			U - Sa	afe unifor	m load ir	n pounds/	sq. ft.	
1 x ³ /16	46	3.00	0.400	D	0.144	0.225	0.324	0.441	0.576			C - Sa	afe conce	ntrated loa	ad in pour	nds/ft.	
I-Bar	40	2.42	0.200	С	800	640	533	457	400			_	ating wid				
T Dui		2.72	0.200	D	0.115	0.180	0.259	0.353	0.461			D - D	eflection	in inches			
1 ¹ /4 x ³ /16		3.75	0.625	U	1250	800	556	408	313	247	200			lections g			
I /4 X /16	55	3.73	0.023	D	0.115	0.180	0.259	0.353	0.462	0.583	0.720			2,000 psi		eu on a	
I-Bar	33	2.87	0.391	С	1250	1000	833	714	625	556	500						
I-Dai		2.01	0.001	D	0.092	0.144	0.207	0.282	0.369	0.467	0.576		1				
1 ¹ /2 x ³ / ₁₆		4.45	0.900	U	1800	1152	800	588	450	356	288	238					
1 /2 // //0	63		0.000	D	0.096	0.150	0.216	0.294	0.384	0.487	0.600	0.726					
I-Bar		3.33	0.675	С	1800	1440	1200	1029	900	800	720	655					
			0.070	D	0.077	0.120	0.173	0.235	0.307	0.389	0.480	0.581		1			
1 ³ /4 x ³ /16		5.16	1.225	U	2450	1568	1089	800	613	484	392	324	272				
1777710	70	0.10		D	0.082	0.129	0.185	0.252	0.329	0.417	0.514	0.622	0.740				
I-Bar	. •	3.78	3.78	1.072	С	2450	1960	1633	1400	1225	1089	980	891	817			
1 541		00	1.072	D	0.066	0.103	0.148	0.202	0.263	0.333	0.411	0.498	0.593			,	
2 x ³ /16		5.87	1.600	U	3200	2048	1422	1045	800	632	512	423	356	303	261		
	78	0.01	11000	D	0.072	0.113	0.162	0.221	0.288	0.364	0.450	0.544	0.649	0.761	0.881		
I-Bar	. •	4.25	1.600	С	3200	2560	2133	1829	1600	1422	1280	1164	1067	985	914		
			11000	D	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.436	0.519	0.609	0.705		
2 ¹ /4 x ³ /16		6.57	2.025	U	4050	2592	1800	1322	1013	800	648	536	450	383	331	253	
_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	85			D	0.064	0.100	0.144	0.196	0.256	0.324	0.400	0.484	0.576	0.675	0.785	1.023	
I-Bar		4.66	2.278	С	4050	3240	2700	2314	2025	1800	1620	1473	1350	1246	1157	1013	
			2.2.0	D	0.051	0.080	0.115	0.157	0.205	0.259	0.320	0.387	0.461	0.541	0.627	0.820	
2 ¹ /2 x ³ /16		7.27	2.500	U	5000	3200	2222	1633	1250	988	800	661	556	473	408	313	
= 12 X 110	92		2.000	D	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.435	0.519	0.608	0.705	0.923	
I-Bar	-	5.16	3.125	С	5000	4000	3333	2857	2500	2222	2000	1818	1667	1538	1429	1250	
i Dai		5.16	3.123	D	0.046	0.072	0.104	0.141	0.184	0.233	0.288	0.348	0.415	0.487	0.565	0.737	

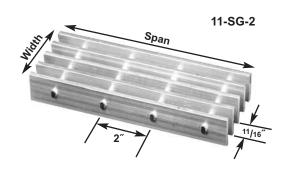
*Based on 12.8 bars/ft. of grating width. Bearing bars */s** c.c. Add. 3 lbs./sq. ft. for 15-SG-2. /s* bearing bars available by inquiry.Note. Grating for spans to the left of the beavy line have a deleteion be stand in all of based and deflection bear in ording dedestration conflor and can be exceeded for other types of load at the discretion of the engineer. The actual Ped (pedestrains) Span under this condition is shown above for each size of grating. When servated grating is specified, the depth of grating required for a specific load will be */s** greater than that shown in these tables.

Panel Width Chart (in.) - 15-SG-4 15-SG-2, 19-SGLi-4 19-SGLi-2, 15-SGF-4 15-SGI-2, 15-ADT-4 15-ADT-2

Dimensions Are Out-to-Out of Bearing Bars** No. of Bars 2 3 5 6 8 9 10 11 12 13 14 15 16 3/16" Bars **5**¹³/16 711/16 **1**¹/8 3¹⁵/16 **2**¹/16 3 **4**⁷/8 $6^{3}/4$ 8⁵/8 **9**9/16 10¹/2 **11**⁷/16 12³/8 **13**⁵/16 14¹/₄ No. of Bars 17 19 20 23 24 26 29 18 21 22 25 27 28 30 31 3/16" Bars 15³/16 18¹⁵/16 19⁷/8 20¹³/16 21³/4 22¹¹/16 **26**⁷/16 16¹/8 **17**¹/16 18 23⁵/8 **24**⁹/16 25¹/2 **27**³/8 28⁵/16 No. of Bars 32 33 34 35 36 37 38 39 3/16" Bars 33¹⁵/₁₆ 34⁷/₈ 35¹³/₁₆ 29¹/4 | 30³/16 31¹/8 **32**¹/16 33 **Add 1/4" for extended cross bars. Deduct 1/16" for 1/8" bearing bars. Standard panel widths indicated in blue.

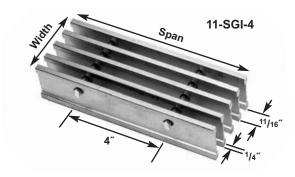
Panel Width	D	Dimensions Are Out-to-Out of Bearing Bars**													
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
¹ /4" Flange	1 ³ /16	2 ¹ /8	3 ¹ /16	4	4 ¹⁵ /16	5 ⁷ /8	6 ¹³ /16	73/4	811/16	9 ⁵ /8	10 9/16	11 ¹ /2	12 ⁷ /16	13 ³ /8	14 ⁵ /16
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
¹ /4" Flange	15 ¹ /4	16 ³ /16	17 ¹ /8	18 ¹ /16	19	19 ¹⁵ /16	20 ⁷ /8	21 ¹³ /16	22 ³ /4	2311/16	24 ⁵ /8	25 ⁹ /16	26 ¹ / ₂	27 ⁷ /16	28 ³ /8
No. of Bars	32	33	34	35	36	37	38	39							
¹/₄″ Flange	29 ⁵ /16	30 ¹ / ₄	31 ³ /16	32 ¹ /8	33 ¹ /16	34	34 ¹⁵ /16	35 ⁷ /8							

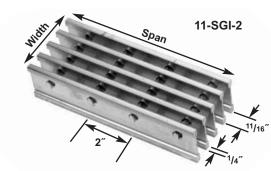

^{**}Bar thickness is 1/4" at top and bottom. Add 1/4" for extended cross bars. Standard panel widths indicated in blue.


Toll Free: 800-321-9800 23

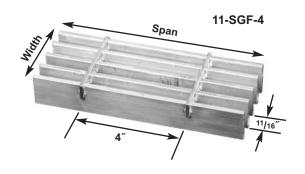
ALUMINUM PROFILES

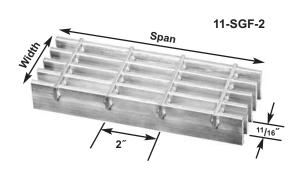
11 SPACE


ALUMINUM RECTANGULAR BAR - 11-SG-4 • 11-SG-2

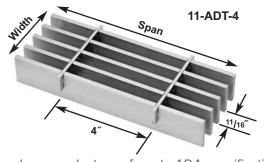


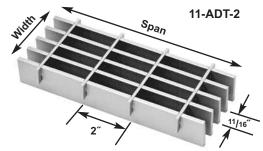
% Ope	n Area*
4" cc	69%
2" cc	66%


ALUMINUM I-BAR - 11-SGI-4 • 11-SGI-2



% Oper	n Area*
4" cc	69%
2" cc	66%


ALUMINUM FLUSH TOP - 11-SGF-4 • 11-SGF-2



% Open Area*							
4" cc	76%						
2" cc	73%						

ALUMINUM **DOVE TAIL** - 11-ADT-4 = 11-ADT-2

% Open Area*							
4" cc	70%						
2" cc	68%						

The above products conform to ADA specifications

ALUMINUM LOAD TABLES

11 SPACE

Bar Size,	Ped Span,	Wt.* Lbs.	Sec. Prop Sx*, in ³	Clear Span												
Inches	Inches	Sq. Ft.	lx*, in ⁴		2′- 0″	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5′- 0″	5′- 6″	6′- 0″	6′- 6″	7′- 0″	8′- 0″
4 3/			0.545	U	1091	698	485	356	273	215		U - Sa	ife unifor	m load in	pounds/s	g. ft.
1 x ³ /16	50	4.13	0.545	D	0.144	0.225	0.324	0.441	0.577	0.727				trated loa	^	^
I-Bar		3.18	0.273	С	1091	873	727	623	545	485			ating widt			
		00	0.273	D	0.115	0.180	0.259	0.353	0.460	0.583		D - D(eflection	in inches		
1 ¹ /4 × ³ /16		- 40	0.852	U	1705	1091	758	557	426	337	273	Lo	oads and	deflection	ıs	
1 74 X 9/16	59	5.13	0.032	D	0.115	0.180	0.259	0.353	0.461	0.584	0.721	gi	ven in thi	s table ar	e theoreti	
I-Bar		3.79	0.533	С	1705	1364	1136	974	852	758	682		id are bas 2,000 psi.	ed on a u	nıt stress	of
1 Dai			0.000	D	0.092	0.144	0.207	0.282	0.369	0.467	0.576	225 272				
1 ¹ / ₂ x ³ / ₁₆		6.21	1.227	U	2455	1571	1091	802	614	485	393	325	273			
1 ·/2 X ·/16	68	6.21		D	0.096	0.150	0.216	0.294	0.384	0.486	0.600	0.727	0.865			
I-Bar		4.42	0.920	С	2455	1964	1636	1403	1227	1091	982	893	818			
				D	0.077	0.120	0.173	0.235	0.307	0.389	0.480	0.581	0.691		1	
1 ³ / ₄ x ³ / ₁₆		7.18	1.670	U	3341	2138	1485	1091	835	660	535	442	371	316	-	
1 /4 × /16	76	7.10		D	0.082	0.129	0.185	0.252	0.329	0.417	0.515	0.623	0.740	0.868		
I-Bar		5.03	1.462	С	3341	2673	2227	1909	1670	1485	1336	1215	1114	1028		
				D	0.066	0.103	0.148	0.202	0.263	0.333	0.411	0.498	0.593	0.695		
2 x ³ /16		8.14	2.182	U	4364	2793	1939	1425	1091	862	698	577	485	413	356	273
2 × /10	84	0.14		D	0.072	0.113	0.162	0.221	0.288	0.365	0.450	0.544	0.648	0.760	0.881	1.153
I-Bar		5.67	2.182	С	4364	3491	2909	2494	2182	1939	1746	1587	1455	1343	1247	1091
				D	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.436	0.519	0.609	0.706	0.922
2 ¹ / ₄ x ³ / ₁₆		9.10	2.761	U	5523	3535	2455	1803	1381	1091	884	730	614	523	451	345
2 74 X 710	92	0.10		D	0.064	0.100	0.144	0.196	0.256	0.324	0.400	0.484	0.576	0.676	0.784	1.023
I-Bar		6.23	3.107	С	5523	4418	3682	3156	2761	2455	2209	2008	1841	1699	1578	1381
				D	0.051	0.080	0.115	0.157	0.205	0.259	0.320	0.387	0.461	0.541	0.627	0.819
2 ¹ /2 x ³ /16		10.06	3.409	U	6818	4364	3030	2226	1705	1347	1091	902	758	646	557	426
- 12 × 110	100	10.00		D	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.436	0.519	0.609	0.706	0.921
I-Bar		6.91	4.261	С	6818	5455	4546	3896	3409	3030	2727	2479	2273	2098	1948	1705
				D	0.046	0.072	0.104	0.141	0.184	0.233	0.288	0.348	0.415	0.487	0.564	0.737

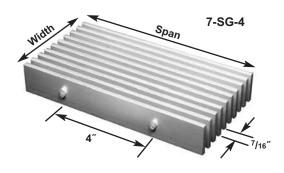
Panel Width Chart (in.) - 11-SGF-4 11-SGF-2, 11-SGLi-4 11 SGLi-2, 11-SG-4 11-SG-2, 11-ADT-4 11-ADT-2

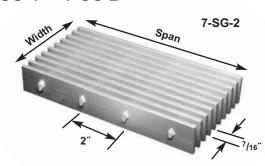
Dimensions A	re Out-t	to-Out	of Bea	ring Ba	ars**										
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
3/16" Bars	7/8	1 ⁹ /16	2 ¹ /4	2 ¹⁵ /16	3 ⁵ /8	4 ⁵ /16	5	5 ¹¹ /16	6 ³ /8	7 ¹ /16	73/4	8 ⁷ /16	9 ¹ /8	9 ¹³ /16	10 ¹ /2
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
3/16" Bars	11 ³ /16	11 ⁷ /8	12 9/16	13 ¹ / ₄	13 ¹⁵ /16	14 ⁵ /8	15 ⁵ /16	16	16 ¹¹ / ₁₆	17 ³ /8	18 ¹ /16	18 ³ / ₄	19 ⁷ /16	20 ¹ /8	20 ¹³ /1
No. of Bars	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
³ /16″ Bars	21 ¹ / ₂	22 ³ /16	22 ⁷ /8	23 ⁹ /16	24 ¹ / ₄	24 ¹⁵ /16	25 ⁵ /8	26 ⁵ /16	27	27 ¹¹ /16	28 ³ /8	29 ¹ /16	29 ³ /4	30 ⁷ /16	31 ¹ /8
No. of Bars	47	48	49	50	51	52	53								
3/16" Bars	31 ¹³ /16	32 ¹ / ₂	33 ³ /16	33 ⁷ /8	34 ⁹ /16	35 ¹ / ₄	35 ¹⁵ /16								

Panel Width Chart (in.) - 11-SGI-4 11-SGI-2 Dimensions Are Out-to-Out of Bearing Bars**															
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1/4" Flange	¹⁵ /16	1 ⁵ /8	2 ⁵ /16	3	3 ¹¹ /16	4 ³ /8	5 ¹ /16	5 ³ /4	6 ⁷ /16	7 ¹ /8	7 ¹³ /16	8 ¹ / ₂	9 ³ /16	9 ⁷ /8	10 9/16
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1/4" Flange	11 ¹ /4	11 ¹⁵ / ₁₆	12 ⁵ /8	13 ⁵ /16	14	14 ¹¹ /16	15 ³ /8	16 ¹ /16	16 ³ /4	17 ⁷ /16	18 ¹ /8	18 ¹³ /16	19 ¹ / ₂	20 ³ /16	20 ⁷ /8
No. of Bars	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
1/4" Flange	21 ⁹ /16	22 ¹ / ₄	22 ¹⁵ /16	23 ⁵ /8	24 ⁵ /16	25	25 ¹¹ /16	26 ³ /8	27 ¹ /16	27 ³ / ₄	28 ⁷ /16	29 ¹ /8	29 ¹³ /16	30 ¹ / ₂	31 ³ /16
No. of Bars	47	48	49	50	51	52	53								
1/4" Flange	31 ⁷ /8	32 ⁹ /16	33 ¹ /4	33 ¹⁵ /16	34 ⁵ /8	35 ⁵ /16	36								

**Bar thickness is 1/4" at top and bottom. Add 1/4" for extended cross bars. Standard panel widths indicated in blue.

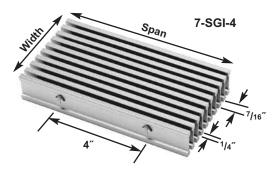
Toll Free: 800-321-9800 25

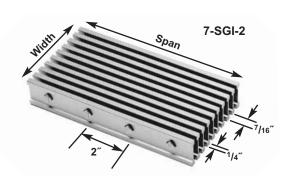

*Based on 17.455 bars/ft, of grating width. Bearing bars "/s" c.c. Add. 4 lbs./sq. ft. for 11-SGF-2. /s" bearing bars available by inquiry.


Note: Grating for spans to the left of the heavy line have a deflection less than "ss" for uniform loads of 100 lbs./sq. ft. This is the maximum deflection to afford predestrian conditror and can be exceeded for other types of load at the discretion of the engineer. The actual Ped (pedestrian) Span under this condition is shown above for each size of grating. When servated grating is specified, the depth of grating required for a specific load will be 4st greater than that shown in these tables.

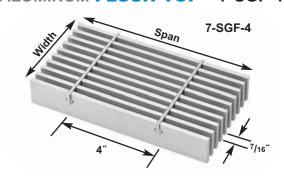
ALUMINUM PROFILES

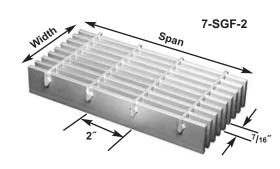
7 SPACE


ALUMINUM RECTANGULAR BAR - 7-SG-4 * 7-SG-2

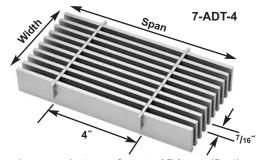


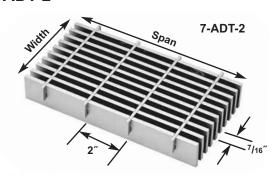
% Ope	n Area*
4" cc	54%
2" cc	51%


ALUMINUM I-BAR - 7-SGI-4 • 7-SGI-2



% Ope	n Area*
4" cc	39%
2" cc	36%


ALUMINUM FLUSH TOP - 7-SGF-4 - 7-SGF-2



% Ope	n Area*
4" cc	54%
2" cc	51%

ALUMINUM **DOVE TAIL** - 7-ADT-4 - 7-ADT-2

% Ope	n Area*
4" cc	55%
2" cc	53%

ALUMINUM LOAD TABLES

7 SPACE

Bar Size.	Ped	Wt.*	Sec. Prop						CI	earSpa	n					
Inches	Span, Inches	Lbs. Sq. Ft.	Sx*, in ³ Ix*, in ⁴		2′- 0″	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5′- 0″	5′- 6″	6′- 0″	6′- 6″	7′- 0″	8′- 0″
				U	1714	1097	762	560	429	339	274	U - Saf	fe uniforn	ı load in	pounds/so	q. ft.
$1 \times {}^{3}/16$		6.30	0.857	D	0.144	0.225	0.324	0.441	0.577	0.730	0.899		è concent		in pound	ds/ft.
LDan	56	4.79	0.429	С	1714	1371	1143	980	857	762	686	_	ting width			
I-Bar		4.79	0.429	D	0.115	0.180	0.259	0.353	0.461	0.583	0.720	D - De	flection is	1 inches		
41, 3,		7.78	1.339	U	2679	1714	1190	875	670	529	429	354	298		nd deflect	
1 ¹ /4 x ³ /16	66	7.70	1.555	D	0.115	0.180	0.259	0.353	0.461	0.583	0.721	0.871	1.038		this table and are b	
I-Bar	00	5.75	0.837	С	2679	2143	1786	1531	1339	1190	1071	974	893		ress of 12	
I-Dai		3.73	0.007	D	0.092	0.144	0.207	0.282	0.369	0.466	0.576	0.697	0.830		,	
1 ¹ /2 x ³ /16		9.28	1.929	U	3857	2469	1714	1259	964	762	617	510	429	365		
1 72 X 716	76			D	0.096	0.150	0.216	0.294	0.384	0.486	0.600	0.726	0.865	1.014		
I-Bar	,,,	6.74	1.446	С	3857	3086	2571	2204	1929	1714	1543	1403	1286	1187	1	
i Dui		0		D	0.077	0.120	0.173	0.235	0.307	0.389	0.480	0.581	0.691	0.811		
1 ³ /4 x ³ /16		10.80	2.625	U	5250	3360	2333	1714	1313	1037	840	694	583	497	429	328
1 /4 / /10	85			D	0.082	0.129	0.185	0.252	0.329	0.417	0.514	0.622	0.740	0.869	1.009	1.316
I-Bar		7.70	2.297	С	5250	4200	3500	3000	2625	2333	2100	1909	1750	1615	1500	1313
				D	0.066	0.103	0.148	0.202	0.263	0.333	0.411	0.498	0.592	0.695	0.806	1.054
2 x ³ /16		12.32	3.429	U	6857	4389	3048	2239	1714	1355	1097	907	762	649	560	429
2 × 710	94			D	0.072	0.113	0.162	0.220	0.288	0.365	0.450	0.545	0.648	0.760	0.882	1.153
I-Bar		8.71	3.429	С	6857	5486	4572	3918	3429	3048	2743	2494	2286	2110	1959	1714
				D	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.436	0.518	0.608	0.706	0.921
2 ¹ /4 × ³ /16		13.83	4.339	U	8679	5554	3857	2834	2170	1714	1389	1148	964	822	708	542
2 74 X 710	103			D	0.064	0.100	0.144	0.196	0.256	0.324	0.400	0.484	0.576	0.676	0.783	1.023
I-Bar		9.59	4.882	С	8679	6943	5786	4959	4339	3857	3471	3156	2893	2670	2480	2170
				D	0.051	0.080	0.115	0.157	0.205	0.259	0.320	0.387	0.461	0.541	0.627	0.819
$2^{1}/2 \times {}^{3}/16$		15.33	5.357	U	10714	6857	4762	3499	2679	2116	1714	1417	1190	1014	875	670
= 72 X 710	111			D	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.436	0.518	0.608	0.706	0.922
I-Bar		10.66	6.697	С	10714	8572	7143	6123	5357	4762	4286	3896	3571	3297	3061	2679
				D	0.046	0.072	0.104	0.141	0.184	0.233	0.288	0.348	0.415	0.487	0.564	0.737

7-SG-4 7-SG-2, 7	-SGLi-4	7-SGL	.i-2, 7-S	GF-4 7	-SGF-2	, 7-AD1	Γ-4 7- <mark>Α</mark> Ι	DT-2 Pa	anel Wi	dth Ch	art (in.)	Out-to-	Out of	Bearing	Bars *
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
3/16" Bars	5/8	1 ¹ /16	1 ¹ /2	1 ¹⁵ /16	2 ³ /8	2 ¹³ /16	3 ¹ /4	3 ¹¹ /16	4 ¹ /8	4 ⁹ /16	5	5 ⁷ /16	5 ⁷ /8	6 ⁵ /16	6 ³ /4
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
3/16" Bars	7 ³ /16	7 ⁵ /8	8 ¹ /16	8 ¹ / ₂	8 ¹⁵ /16	9 ³ /8	9 ¹³ / ₁₆	10 ¹ / ₄	10 ¹¹ /16	11 ¹ /8	11 ⁹ /16	12	12 ⁷ /16	12 ⁷ /8	13 ⁵ /16
No. of Bars	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
3/16" Bars	13 ³ / ₄	14 ³ /16	14 ⁵ /8	15 ¹ /16	15 ¹ /2	15 ¹⁵ /16	16 ³ /8	16 ¹³ /16	17 ¹ /4	17 ¹¹ /16	18 ¹ /8	18 ⁹ /16	19	19 ⁷ /16	19 ⁷ /8
No. of Bars	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
3/16" Bars	20 ⁵ /16	20 ³ / ₄	21 ³ /16	21 ⁵ /8	22 ¹ /16	22 ¹ / ₂	22 ¹⁵ /16	23 ³ /8	23 ¹³ / ₁₆	24 ¹ / ₄	24 ¹¹ /16	25 ¹ /8	25 ⁹ /16	26	26 ⁷ /16
No. of Bars	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
3/16" Bars	26 ⁷ /8	27 ⁵ /16	27 ³ / ₄	28 ³ /16	28 ⁵ /8	29 ¹ /16	29 ¹ / ₂	29 ¹⁵ /16	30 ³ /8	30 ¹³ /16	31 ¹ / ₄	31 ¹¹ / ₁₆	32 ¹ /8	32 ⁹ /16	33
No. of Bars	77	78	79	80	81	82	83								
3/16" Bars	33 ⁷ /16	33 ⁷ /8	34 ⁵ /16	34 ³ / ₄	35 ³ /16	35 ⁵ /8	36 ¹ /16								
**Add 1/4" for extended cross bars. Deduct 1/16" for 1/8" bearing bars. Standard panel widths indicated in blue.															

7-SGI-4 7-SGI-2 Panel Width Chart (in.) Dimensions Are Out-to-Out of Bearing Bars**															
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1/4" Flange	¹¹ /16	1 ¹ /8	1 ⁹ /16	2	2 ⁷ /16	2 ⁷ /8	3 ⁵ /16	3 ³ /4	4 ³ /16	4 ⁵ /8	5 ¹ /16	5 ¹ /2	5 ¹⁵ /16	6 ³ /8	6 ¹³ /16
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1/4" Flange	71/4	7 ¹¹ /16	8 ¹ /8	8 ⁹ /16	9	9 ⁷ /16	9 ⁷ /8	10 ⁵ /16	10 ³ /4	11 ³ /16	11 ⁵ /8	12 ¹ /16	12 ¹ / ₂	12 ¹⁵ /16	13 ³ /8
No. of Bars	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
1/4" Flange	13 ¹³ /16	14 ¹ /4	14 ¹¹ /16	15 ¹ /8	15 ⁹ /16	16	16 ⁷ /16	16 ⁷ /8	17 ⁵ /16	17 ³ /4	18 ³ /16	18 ⁵ /8	19 ¹ /16	19 ¹ / ₂	19 ¹⁵ /16
No. of Bars	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
1/4" Flange	20 ³ /8	20 ¹³ /16	21 ¹ /4	21 ¹¹ /16	22 ¹ /8	22 ⁹ /16	23	23 ⁷ /16	23 ⁷ /8	24 ⁵ /16	24 ³ / ₄	25 ³ /16	25 ⁵ /8	26 ¹ /16	26 ¹ /2
No. of Bars	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
1/4" Flange	26 ¹⁵ /16	27 ³ /8	27 ¹³ /16	28 ¹ / ₄	28 ¹¹ /16	29 ¹ /8	29 ⁹ /16	30	30 ⁷ /16	30 ⁷ /8	31 ⁵ /16	31 ³ /4	32 ³ /16	32 ⁵ /8	33 ¹ /16
No. of Bars	77	78	79	80	81	82	83								
1/4" Flange	33 ¹ / ₂	33 ¹⁵ /16	34 ³ /8	34 ¹³ /16	35 ¹ / ₄	35 ¹¹ /16	36 ¹ /8								
**Bar thickness is 1/4" at top and bottom. Add 1/4" for extended cross bars. Standard panel widths indicated in blue.															

AR SERIES

PRODUCT SPECIFICATION GUIDE

How to Specify:

The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for Construction
Specifications Canada (CSC)

and the Technical Document's Committee of Construction Specifications Institute (CSI) for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

- A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating). 2. Aluminum: ASTM B221, Aluminum Alloy, Extruded Bars, Rods, Wire, Shapes and Tubing.
- **B.1**. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners.

B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

PART 2: PRODUCT...

Grating: Aluminum Riveted AR Series by Ohio Gratings, Inc., or approved equal.

Serrated
Surface

2. Bearing Bars: Rectangular Bar spaced

11/6" between bar faces maximum.

(Note: 3/4" spacing may be specified at the discretion of the architect/engineer.)

3. Connecting Bars: Extending between bearing between bearing bars and riveted to bearing bars at 7" centers. (Note: 31/2"

rivet centers may be specified for maximum lateral stability.)

- 4. Surface: Plain (Note: A serrated connecting bar may be specified for maximum skid resistance.)
- 5. Loading: Grating to carry a pedestrian loading equal to a uniform load of 100# per square foot over the required clear span with deflection not to exceed 1/4". (Note: alternate loading requirements may be specified at the discretion of the architect /engineer.)
- 6. Finish: Mill finished.
- 7. Fabrication and Tolerances: in accordance with the NAAMM Metal Bar Grating Manual.

PART 3: EXECUTION...

3.1 Installation

- **A.** Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.
- **B.** Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.
- **C.** Cutting, Fitting and Placement.
- 1. Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.
- 2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.
- 3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.
- 4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.
- 5. Utilize standard panel widths wherever possible.

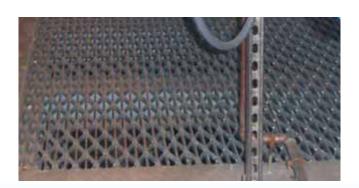
- **D.** Protection of Aluminum from Dissimilar Materials:

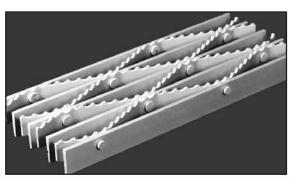
 1. Where aluminum surfaces come into contact with dissimilar metals, surfaces shall be kept from direct contact by painting the dissimilar metal with one coat of bituminous paint or other approved insulating material.
- Where aluminum surfaces come into contact with dissimilar materials such as concrete, masonry or lime mortar, exposed aluminum surfaces shall be painted with one coat of bituminous paint or other approved insulating material.

3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

Grating Profiles Available... AR Series - Aluminum Riveted 18-AR-7 3/4" 19-AR-7 19-AR-3.5 3/4" 12-AR-3.5


ALUMINUM RIVETED

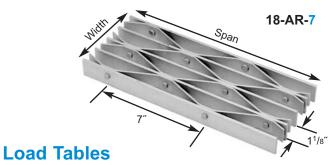

AR SERIES

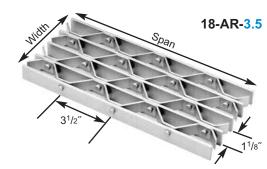
Product Applications...

Riveted grating is the oldest style of industrial footwalk, but still the choice of many engineers due to its ruggedness, reliability and durability. This grating is composed of straight bearing bars, and bent connecting bars, which are joined at their contact points by rivets. Since the connecting bars extend continuously between bearing bars along the

grating spans, they not only serve to join the bearing bars together, but also contribute to the load carrying capability and lateral stability of the grating panels. This added dimension makes riveted grating an ideal choice where high strength and stiffness are required. Slip resistant surfaces are available.

◆ Aluminum Riveted Grating (serrated)




▲ Franklin (detail)
- Charlotte, NC

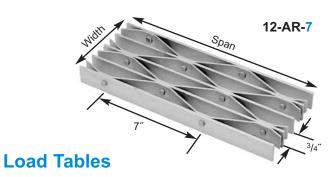
▲ Franklin WWTP - Charlotte, NC

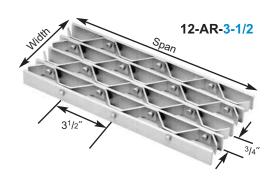
ALUMINUM RIVETED

18-AR-7 / 18-AR-3-1/2

Don Cin :	Ped	Wt.*	Sec. Prop Sx*, in ³	ClearSpan												
Bar Size, Inches	Span, Inches	Lbs. Sq. Ft.	lx*, in ⁴		2'- 0"	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5′- 0″	5′- 6″	6′- 0″	6′- 6″	7′- 0″	8′- 0″
		-	0.242	U	484	310	215	158								
1 x ¹ /8	41	2.70	0.242	D	0.144	0.225	0.324	0.441]	U - S	afe unif	orm load	l in poui	nds/sq. f	t.	
1 % /8	41	2.70	0.121	С	484	387	323	277]	C-S	afe cond	centrated	d load in	pounds	/ft. gratir	ng width
			0.121	D	0.115	0.180	0.259	0.353		D - D	eflection	n in inch	es			
			0.363	U	726	465	323	237	182		011001101	1 111 111011	00			
1 x ³ / ₁₆	45	3.30	0.303	D	0.144	0.225	0.324	0.441	0.577							
1 / / 10	43	3.30	0.182	С	726	581	484	415	363			s and d				
			0.162	D	0.115	0.180	0.259	0.353	0.461		given	in this t	table ar	e theore	etical, ar	nd are
			0.378	U	757	484	336	247	189	149	based	d on a u	nit stres	ss of 12	,000 ps	i.
$1^{1}/4 \times {}^{1}/8$	48	3.10	0.576	D	0.115	0.180	0.259	0.353	0.460	0.581						
1 /4 / /0	40	3.10	0.236		757	605	504	432	378	336						
			0.230	D	0.092	0.144	0.207	0.282	0.368	0.466				% Ope	n Area*	
			0.567	U	1135	726	504	371	284	224			В			16"
$1^{1}/4 \times {}^{3}/16$	53	3.80	0.507	D	0.115	0.180	0.259	0.353	0.461	0.583			7	cc 78	3% 74	4%
1 /4 // /10		0.00	0.355	С	1135	908	757	648	567	504			31/	2" cc 77		3%
			0.555	D	0.092	0.144	0.207	0.282	0.368	0.466						
			0.545	U	1089	697	484	356	272	215	174					
$1^{1}/_{2} \times ^{1}/_{8}$	55	3.40	0.545	D	0.096	0.150	0.216	0.294	0.383	0.486	0.599			3 Size,	CB Size All Spac	
1 /2 / /0		0.40	0.409	С	1089	872	726	623	545	484	436			ru 13/4	3/4 x 1	
			0.403	D	0.077	0.120	0.173	0.235	0.307	0.389	0.480			- 2 ¹ / ₂	1 x ¹ /	
			0.817	U	1634	1046	726	534	409	323	261	216		- 2.12	1 X '/	8
$1^{1}/2 \times {}^{3}/16$	61	4.40	0.017	D	0.096	0.150	0.216	0.294	0.384	0.486	0.599	0.726				
1 /2 / / 10	"	7.40	0.613	С	1634	1307	1089	934	817	726	654	594				
			0.013	D	0.077	0.120	0.173	0.235	0.307	0.389	0.480	0.581		,		
			1.112	U	2224	1424	989	726	556	439	356	294	247			
$1^{3}/4 \times {}^{3}/_{16}$	69	4.90	1.112	D	0.082	0.129	0.185	0.252	0.329	0.416	0.514	0.622	0.740			
1 / 1 / 1 / 10		4.00	0.973	С	2224	1779	1483	1271	1112	989	890	809	741			
			0.070	D	0.066	0.103	0.148	0.202	0.263	0.333	0.412	0.498	0.592		,	
			1.453	U	2905	1859	1291	949	726	574	465	384	323	275		
$2 \times \frac{3}{16}$	76	5.80	1.400	D	0.072	0.112	0.162	0.221	0.288	0.365	0.450	0.544	0.648	0.760		
2 X 710	'	0.00	1.453	С	2905	2324	1937	1660	1453	1291	1162	1056	968	894		
			1.400	D	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.435	0.518	0.608		,
			1.838	U	3677	2353	1634	1201	919	726	588	486	409	348	300	
$2^{1}/4 \times {}^{3}/16$	83	6.40	1.000	D	0.064	0.100	0.144	0.196	0.256	0.324	0.400	0.484	0.577	0.676	0.784	
2 /4 X /10		0.40	2.068	С	3677	2942	2451	2101	1838	1634	1471	1337	1226	1131	1051	
			2.000	D	0.051	0.080	0.115	0.157	0.205	0.259	0.320	0.387	0.461	0.541	0.627	
			2.270	U	4539	2905	2018	1482	1135	897	726	600	504	430	371	284
$2^{1}/2 \times {}^{3}/16$	90	6.90	6.90 2.270 D	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.435	0.518	0.609	0.706	0.923	
_ / L X / 10					4539	3632	3026	2594	2270	2018	1816	1651	1513	1397	1297	1135
		2.007	D	0.046	0.072	0.104	0.141	0.184	0.233	0.288	0.349	0.415	0.487	0.564	0.737	

11/8" face-to-face, connecting bars riveted 7" c.c. Add .2 lbs./sq. ft. for 18-AR-3/2.	deflection less than 1/4" for uniform loads of 100 lbs./sq. ft. This is the maximum deflection	or types of load at the discretion of the engineer. The actual Ped (pedestrian) Span under	
		types of loa	this condition is shown above for each size of grating.


18-AR -7 18-AR- 3-1/2 Panel Width Chart (in.) Dimensions Are Out-to-Out of Bearing Bars**


						•	,						•		
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
³ /16" Bars	1 ¹ /2	2 ¹³ /16	4 ¹ /8	5 ⁷ /16	6 ³ /4	8 ¹ /16	9 ³ /8	10 ¹¹ /16	12	13 ⁵ /16	14 ⁵ /8	15 ¹⁵ /16	17 ¹ /4	18 ⁹ /16	19 ⁷ /8
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28			
³ /16" Bars	21 ³ /16	22 ¹ / ₂	23 ¹³ /16	25 ¹ /8	26 ⁷ /16	27 ³ /4	29 ¹ /16	30 ³ /8	31 ¹¹ / ₁₆	33	34 ⁵ /16	35 ⁵ /8			

^{**}Add $^{1}/_{4}$ " for rivet heads. Deduct $^{1}/_{16}$ " for each $^{1}/_{8}$ " bearing bar. Standard panel widths indicated in blue.

ALUMINUM RIVETED

12-AR-7 / 12-AR-3-1/2

Bar Size, Span, Lbs. Sec. Prop Sx*, in ³																		
Inches	Span, Inches	Sq. Ft.	Sx*, in ³ lx*, in ⁴		2′- 0″	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5′- 0″	5′- 6″	6′- 0″	6′- 6″	7′- 0″	8′- 0″		
			0.508	U	1017	651	452	332	254	201		U - Safe uniform load in pounds/sq. C - Safe concentrated load in pounds						
1 x ³ /16	49	4.50	0.506	D	0.144	0.225	0.324	0.441	0.576	0.730								
1 % /10	49	4.50	0.254	С	1017	813	678	581	508	452		grating width D - Deflection in inches						
				D	0.115	0.180	0.259	0.353	0.460	0.583								
			0.794	U	1589	1017	706	519	397	314	254	Loode	and do	flootion				
1 ¹ /4 x ³ /16	58	5.30	0.794 D 0.115 0.180 0.259 0.353 0.461 0.584 0.719 Loads ar			n this tab	le are the	eoretical	and are									
1 /4 X /10	30	5.30	0.496	С	1589	1271	1059	908	794	706	636	based	on a unit	stress of	f 12,000	osi.		
			0.490	D	0.092	0.144	0.207	0.282	0.368	0.466	0.576							
			1.144	U	2288	1464	1017	747	572	452	366	303	7" 00 65%					
1 ¹ /2 x ³ /16	67	6.10	1.144	D	0.096	0.150	0.216	0.294	0.384	0.486	0.600	0.727						
1 /2 X /10	07	0.10	0.858	С	2288	1830	1525	1307	1144	1017	915	832	763			70		
			0.000	D	0.077	0.120	0.173	0.235	0.307	0.389	0.480	0.581	0.692		,			
			1.557	U	3114	1993	1384	1017	778	615	498	412	346	295				
1 ³ /4 x ³ / ₁₆	75	6.80	1.007	D	0.082	0.129	0.185	0.252	0.329	0.416	0.514	0.623	0.741	0.870				
1 74 % 710	/ 3	0.00	1.362	С	3114	2491	2076	1779	1557	1384	1246	1132	1038	958				
			1.502	D	0.066	0.103	0.148	0.202	0.263	0.333	0.412	0.498	0.592	0.695		1		
		8.10	1 2 034 ⊢	U	4067	2603	1808	1328	1017	803	651	538	452	385	332			
2 x ³ / ₁₆	83			D	0.072	0.112	0.162	0.220	0.288	0.364	0.450	0.545	0.648	0.760	0.882			
2 X 710	00	0.10	2.034	С	4067	3254	2712	2324	2034	1808	1627	1479	1356	1251	1162			
			2.004	D	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.436	0.518	0.608	0.706			
			2.574	U	5148	3294	2288	1681	1287	1017	824	681	572	487	420	322		
$2^{1}/4 \times {}^{3}/_{16}$	90	8.90	2.074	D	0.064	0.100	0.144	0.196	0.256	0.324	0.400	0.484	0.576	0.676	0.784	1.025		
2 /4 X /10		0.00	2.896	С	5148	4118	3432	2941	2574	2288	2059	1872	1716	1584	1471	1287		
			2.000	D	0.051	0.080	0.115	0.157	0.205	0.259	0.320	0.387	0.461	0.541	0.627	0.819		
			3.178	U	6355	4067	2824	2075	1589	1255	1017	840	706	602	519	397		
$2^{1}/2 \times {}^{3}/16$	98	9.60	5.170	D	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.435	0.518	0.609	0.706	0.921		
= 12 X 110		0.00	3.972	С	6355	5084	4237	3631	3178	2824	2542	2311	2118	1955	1816	1589		
			3.312	D	0.046	0.072	0.104	0.141	0.184	0.233	0.288	0.348	0.415	0.487	0.565	0.737		

*Based on 16.269 bars/ft. of grating width. Bearing bars 3/4" face-to-face, connecting bars riveted 7" c.c. Add .2 lbs./sq. ft. for 12-AR-31... hf. by inquiry Note: Grating for spans to the left of the heavy line have a deflection less than 1/4" for uniform loads of 100 lbs./sq, ft. This is the maximum deflection to afford pedestrian comfort and can be exceeded for other types of load at the discretion of the engineer. The actual Ped (pedestrian) Span under this condition is shown above for each size of grating.

12-AR-7 12-AR-3-1/2 Panel Width Chart (in.) Dimensions Are Out-to-Out of Bearing Bars**

No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
³ /16" Bars	1 ¹ /8	2 ¹ /16	3	3 ¹⁵ /16	4 ⁷ /8	5 ¹³ /16	6 ³ /4	7 ¹¹ /16	8 ⁵ /8	9 ⁹ /16	10 ¹ / ₂	11 ⁷ /16	12 ³ /8	13 ⁵ /16	14 ¹ / ₄
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
³ /16" Bars	15 ³ /16	16 ¹ /8	17 ¹ /16	18	18 ¹⁵ /16	19 ⁷ /8	2013/16	21 ³ / ₄	2211/16	23 ⁵ /8	24 ⁹ /16	25 ¹ / ₂	26 ⁷ /16	27 ³ /8	28 ⁵ /16
No. of Bars	32	33	34	35	36	37	38	39							
³ /16" Bars	29 ¹ / ₄	30 ³ /16	31 ¹ /8	32 ¹ /16	33	33 ¹⁵ / ₁₆	34 ⁷ /8	35 ¹³ /16							

^{**}Add $^{1}/_{4}$ " for rivet heads. Deduct $^{1}/_{16}$ " for each $^{1}/_{8}$ " bearing bar. Standard panel widths indicated in blue.

Toll Free: 800-321-9800 31

ALUMINUM PLANK

Product Applications...

As an alternative to bar grating, aluminum plank is structurally sound and cosmetically attractive. Made from extruded aluminum, plank grating is relatively maintenance free and has no parts to work loose or splinter. The surface can be provided unpunched or with a variety of punch patterns for the passage of air, light, heat or moisture. A diagonal pattern is also available which meets the ADA requirements for wheelchair accessibility and high heel foot traffic.

The interconnecting webs offer a flush top walking surface for maximum foot contact and comfort. Plank can be used as an alternative to those applications requiring open grating with plate attached to the top surface. This is a typical application for waste water treatment plants to help reduce the odor which is inherent at these facilities.

Aluminum Plank is also used for entranceways and walkways for bridges, trails, marine refrigeration, stadiums and more.

River Lock

▲ Harrison WWTP (detail)
- Charlotte, NC

▲ Grosse ile Bridge - Grosse ile, MI

PRODUCT SPECIFICATION GUIDE

How to Specify:

The information below provides a specification format for architectural and engineering specification sections that. when applied, will be consistent with the Three-Part Section Format for Construction Specifications Canada (CSC) and the Technical **Documents Committee of Construction** Specifications Institute (CSI) for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating).

2. Aluminum: ASTM B221, Aluminum Alloy, Extruded Bars, Rods, Wire, Shapes and Tubing.

B.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners.

B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

PART 2: PRODUCT...

- Grating to be Heavy Duty Aluminum Plank Grating by Ohio Gratings, Inc., or approved equal.
- 2. Grating panels to be made from 6" wide extruded sections and banded to form standard panel widths.

Toll Free: 800-321-9800

3. Surface to be punched with 3" x 19/32" rectangular openings, and connecting webs to have two raised transverse ribs for stiffness and skid resistance. (Note: alternate

punch/patterns may be specified at the discretion of the architect /engineer.) 4. Sides of 6" plank sec-

tions to be plain. (Note: sides may be specified as interlocking, subject to availability, at the discretion of the architect /engineer.)

5. Loading: Grating to carry a pedestrian loading equal to a uniform load of 100# per square foot over the required clear span with deflection not to exceed 1/4". (Note: alternate loading requirements may be specified at the discretion of the architect /engineer.)

6. Finish: Mill finished.

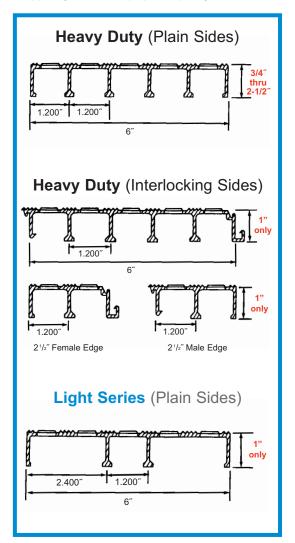
7. Fabrication and Tolerances: in accordance with the NAAMM Metal Bar Grating Manual.

PART 3: EXECUTION...

3.1 Installation

A. Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.

- **B.** Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.
- **C.** Cutting, Fitting and Placement.
- 1. Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.
- 2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.
- 3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.
- 4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.5. Utilize standard panel widths wherever
- D. Protection of Aluminum from Dissimilar

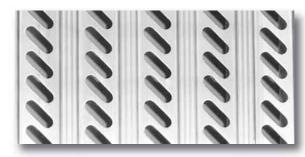

possible.

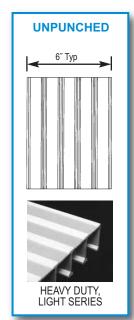
Materials:

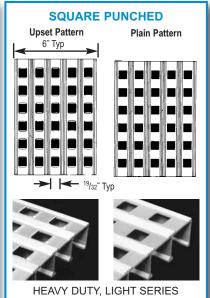
- 1. Where aluminum surfaces come into contact with dissimilar metals, surfaces shall be kept from direct contact by painting the dissimilar metal with one coat of bituminous paint or other approved insulating material.
- 2. Where aluminum surfaces come into contact with dissimilar materials such as concrete, masonry or lime mortar, exposed aluminum surfaces shall be painted with one coat of bituminous paint or other approved insulating material.

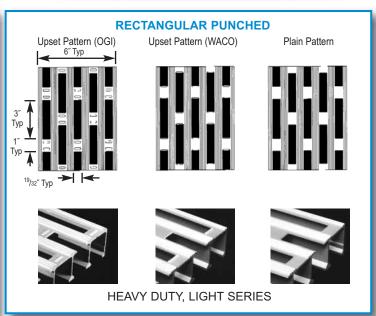
3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

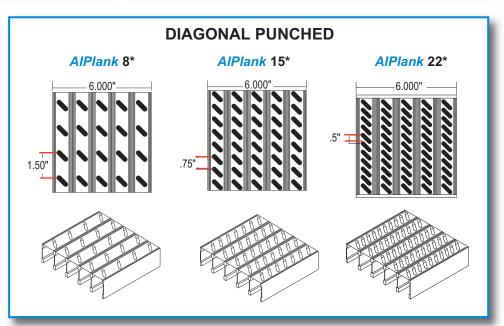





PUNCH PATTERN GUIDE


Aluminum plank grating is available unpunched or with a variety of punch / patterns as shown. Rectangular or square punched holes are most commonly used for water and waste treatment plants and in marine applications. The surface of plank grating can be specified as plain or with one of two styles of upsets (OGi or WACO) designed to promote a slip resistant walkway, especially in the presence of moisture, oil or other spilled substances.

All of our Diagonal Punched Patterns meet ADA Specifications for high heel and wheelchair traffic.

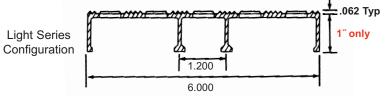


*Alternate for plate covered aluminum grating

Upset Pattern (OGI)

* number indicates % open area

ALUMINUM PLANK


Aluminum plank grating is available in 20' or 26' lengths for customer fabrication, or as fabricated by Ohio Gratings according to customer plans and specifications. Individual 6" plank sections can be banded together to form standard panel widths for ease of handling and installation. When the width of the total grating "run" (number of continuous

series of panels) does not result in a total measurement evenly divisible by the six-inch sections, the last panel can be fabricated from several whole sections and a partial section according to the panel width chart shown. In order to meet flatness tolerances, fabricated panels must always be end banded, and should not exceed 36" in width.

HEAVY DUTY

Plank	Ped	Sec. Prop	Weig	ht Per S	q. Ft.							Clea	rSpan									
Size, Inches	Span, Inches	Sx*, in ³ Ix*, in ⁴	Non Punched	Rect. Punched	Square Punched		2'- 0"	2′- 6″	3′- 0″	3′- 6″	4'- 0"	4′- 6″	5'- 0"	5′- 6″	6′- 0″	6'- 6"	7′- 0″	8'- 0"				
		0.217				U	435	278	193	142	108	85	69	U - Sa	fe unifor	iniform load in pounds/so						
3/4	39	0.217	2.2	1.8	2.0	D	0.121	0.237	0.342	0.465	0.608	0.770	0.950	C - Sa	fe conce	entrated load in pounds/ft.						
74	39	0.103	2.2			C	435	348	290	248	217	193	174		ating widt							
		0.103				D	0.121	0.190	0.273	0.371	0.485	0.614	0.760		flection i		and defle	actions				
		0.416				U	833	533	370	272	208	164	133	110	92		n this tak					
1	49	0.110	2.6	2.2	2.4	D	0.124	0.193	0.279	0.380	0.496	0.628	0.775	0.938	1.117	theore	tical, and	lare				
-	.0	0.241				С	833	666	555	476	416	370	333	302	277		on a unit 100 psi.	stress				
						D	0.099	0.155	0.223	0.304	0.396	0.502	0.620	0.748	0.891							
		0.732				_ <u>U</u> _	1464	936	650	478	366	289	234	193	162	138	119	91				
1 ¹ /4	58		3.2	2.8	3.0	D	0.107	0.167	0.241	0.328	0.428	0.542	0.669	0.810	0.964	1.131 450	1.312 418	1.714 366				
		0.491				C D	1464 0.085	1171 0.133	976 0.192	836 0.262	732 0.342	650 0.433	585 0.535	532 0.647	488 0.771	0.904	1.049	1.371				
						U	2167	1387	963	707	541	428	346	286	240	205	1.049	135				
.1.		1.083			3.6	D	0.090	0.141	0.203	0.277	0.362	0.458	0.566	0.684	0.815	0.956	1.109	1.449				
1 ¹ /2	67		3.8	3.4		C	2167	1734	1445	1238	1083	963	867	788	722	666	619	541				
		0.861				D	0.072	0.113	0.163	0.221	0.289	0.366	0.452	0.547	0.651	0.764	0.887	1.157				
					4.2	U	2992	1915	1330	977	748	591	478	395	332	283	244	187				
1 ³ /4		1.496		4.0		D	0.078	0.123	0.177	0.241	0.315	0.398	0.492	0.595	0.708	0.832	0.964	1.260				
1-74	75	1.367	4.4			С	2992	2394	1995	1710	1496	1330	1197	1088	997	920	855	748				
						D	0.062	0.098	0.141	0.192	0.251	0.318	0.393	0.476	0.566	0.664	0.771	1.007				
		1.987				U	3975	2544	1766	1298	993	785	636	525	441	376	324	248				
2	83	1.907	4.9	4.5	4.7	D	0.069	0.108	0.156	0.212	0.277	0.351	0.433	0.524	0.624	0.732	0.849	1.109				
2	03	2.063	4.9	4.5	4.7	С	3975	3180	2650	2271	1987	1766	1590	1445	1325	1223	1135	993				
		2.003				D	0.055	0.086	0.124	0.169	0.221	0.280	0.346	0.419	0.499	0.586	0.679	0.887				
		2.554				U	5109	3270	2270	1668	1277	1009	817	675	567	483	417	319				
$2^{1}/_{4}$	91	2.004	5.5	5.0	5.3	D	0.061	0.095	0.137	0.187	0.244	0.309	0.382	0.462	0.550	0.646	0.749	0.979				
_ / .		3.004	0.0	0.0	0.0	C	5109	4087	3406	2919	2554	2270	2043	1858	1703	1572	1459	1277				
		0.504				D	0.048	0.076	0.110	0.149	0.195	0.247	0.305	0.370	0.440	0.517	0.599	0.783				
		2.985				U	5971	3821	2654	1949	1492	1179	955	789	663	565	487	373				
2 ¹ /2	97		5.9	5.5	.5 5.7	D	0.055	0.086	0.124	0.169	0.221	0.279	0.345	0.418	0.497	0.584	0.677	0.884				
		3.887				<u>C</u>	5971	4777	3981	3412	2985	2654	2388	2171	1990	1837	1706	1492				
						D	0.044	0.069	0.099	0.135	0.176	0.223	0.276	0.334	0.398	0.467	0.541	0.707				

^{*}Based on punched plank

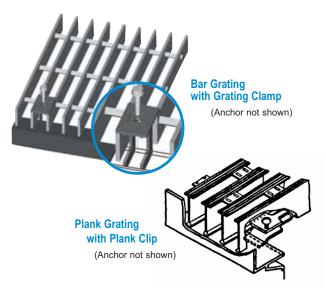
% Open Area*								
Rectangular	37%							
Square	23%							

LIGHT SERIES

Plank	Sec. Prop	Weig	Weight Per Sq. In.				ClearSpan								
Size, Inches	Sx*, in³ lx*, in⁴	Non Punched	Rect. Punched	Square Punched		2′- 0″	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″				
	0.070	2.1	1.7	1.9	U	546	349	242	178	136	107				
4	0.273				D	0.113	0.177	0.254	0.347	0.452	0.570				
'	0.470				С	546	436	364	312	273	242				
	0.173				D	0.090	0.141	0.204	0.278	0.363	0.458				

Note: Grating for spans to the left of the heavy line have a deflection less than 1/4" for uniform loads of 100 lbs./sq. ft. This is the maximum deflection to afford pedestrian comfort and can be exceeded for other types of load at the discretion of the engineer. The actual Ped (pedestrian) Span under this condition is shown above for each size of grating. This grating conforms to MIL-G-18015 (SHIPS).

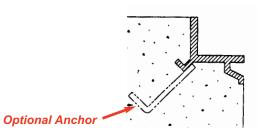
	Panel Width Chart (in.)												
	1 ¹ /2	2 ¹¹ /16	3 ⁷ /8	5 ¹ /8									
6	7 ¹ /2	8 ¹¹ /16	9 ⁷ /8	11 ¹ /8									
12	13 ¹ / ₂	14 ¹¹ /16	15 ⁷ /8	17 ¹ /8									
18	19 ¹ /2	20 ¹¹ /16	21 ⁷ /8	23 ¹ /8									
24	25 ¹ / ₂	26 ¹¹ /16	27 ⁷ /8	29 ¹ /8									
30	31 ¹ /2	32 ¹¹ /16	33 ⁷ /8	35 ¹ /8									
36													


Toll Free: 800-321-9800 35

ALUMINUM GRATING FRAMES

Aluminum Grating Frames...

In conjunction with aluminum grating, Ohio Gratings offers an extruded aluminum grating frame for embedded concrete applications. This frame features a continuous ledge to accommodate plank fasteners, grating clamps, or self-tapping screws for



Massillon, Ohio Wastewater Treatment Plant

The city began a major expansion project in 2002. Once again, aluminum was specified for the walkways

in and around the plant. We provided our aluminum plank and "I-Bar" along with our aluminum angle frame.

Angle frame is available (see diagram) with mitred and welded corners. Long lengths are available with prefabricated corners for handy installations in the field (miscellaneous steel fabricators prefer aluminum for this reason in addition to the fact that it is lightweight, flexible and easily altered in the field). Frames can be provided in mill finish or with a coat of bituminous paint on surfaces that are in direct contact with concrete.

other types of fasteners. The continuous anchor can be used alone or with supplementary anchor straps. Angle frame is available fabricated per drawings with mitred and welded corners or in long lengths with prefabricated corners for installation in the field. Frames can be provided in the mill finished condition or with a coat of bituminous paint on surfaces which will come into contact with concrete.

Fabrication Guidelines...

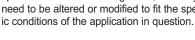
Frame sections can be purchased in stock lengths for customer fabrication or can be fabricated by Ohio Gratings for immediate installation in the field.

The following Guidelines apply to Fabricated Frames...

- 1. All corners are mitred at 45 degrees and welded on the back side. Welds are not ground.
- 2. Nominal small frames (i.e. 1'0" x 1'0" through 5 x 10'0") are made in one piece.
- 3. Extended trench frames are provided with prefabricated end sections and long lengths shipped loose for field butt joining.
- 4. Stock lengths are 20' 0". Longer lengths are available by request.

ALUMINUM GRATING FRAMES

PRODUCT SPECIFICATION GUIDE


How to Specify:

The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent □ with the Three-Part Section Format for Construction Specifications Canada (CSC) and the Technical

Documents Committee of

Construction Specifications

Institute (CSI) for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specif-

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

- A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating). 2. Aluminum: ASTM B221, Aluminum Alloy, Extruded Bars, Rods, Wire, Shapes and Tubing.
- B.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners.

B. The contractor shall submit the manufacturer's specifications, load tables. anchor details and standard installation details.

PART 2: PRODUCT...

1. Angle frames to be extruded design, alloy 6063-T6, by Ohio Gratings, Inc., or approved equal.

2. Frames shall have mitred corners and welded joints and shall be sized to match grating depth.

- 3. Vertical and horizontal legs of frame shape shall have 1/4" wall thickness. Frame shall be designed to provide a continuous slot to accomodate fasteners, and shall have a continuous extruded anchor. (Note: Additional anchor straps may be specified at the discretion of the architect/engineer.)
- 4. Surfaces coming into contact with concrete shall be painted with one coat of bituminous paint.

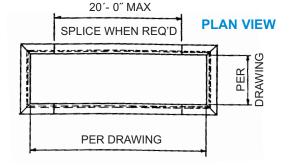
PART 3: EXECUTION...

Continuous

Anchor

3.1 Installation

DIM "B"


Optional Anchor

(1/4" x 1")

- A. Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.
- B. Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.
- C. Cutting, Fitting and Placement.
- 1. Perform all cutting and fitting required for installation. Grating shall be placed such that cross

FRAME DIMENSIONS

GR. SIZE	DIM "A"	DIM "B"
1″	1″	1 ¹ /4"
1 ¹ /4"	1 ¹ /4"	1 ¹ /2"
1 ¹ /2"	1 ¹ /2"	1 ³ /4"
13/4"	1 ³ /4"	2″
2"	2″	2″
21/4"	21/4"	2″
21/2"	2 ¹ /2"	2″

bars align.

- 2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars. 3. Cutouts for circular obstructions are to be at
- least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.
- 4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing. 5. Utilize standard panel widths wherever possible.
- **D.** Protection of Aluminum from Dissimilar Materials:
- 1. Where aluminum surfaces come into contact with dissimilar metals, surfaces shall be kept from direct contact by painting the dissimilar metal with one coat of bituminous paint or other approved insulating material. This is not a permanent surface and may chip off during transit.
- 2. Where aluminum surfaces come into contact with dissimilar materials such as concrete, masonry or lime mortar, exposed aluminum surfaces shall be painted with one coat of bituminous paint or other approved insulating material.

3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

Fabrication Guidelines

Frame sections can be purchased in stock lengths for customer fabrication, or can be fabricated by Ohio Gratings for immediate installation in the field. The following guidelines apply to fabricated frames:

- 1. All corners are mitred at 45 degrees and welded on the back side. Welds are not ground.
- 2. Nominal small frames (i.e., 1'0" x 1'0" through 5'0" x 10'0") are made in one piece.
- 3. Extended trench frames are provided with prefabricated end sections and long lengths shipped loose for field butt joining.
- 4. Stock lengths are 20'0". Longer lengths are available by request.

ALUMINUM STAIR TREADS

Product Applications...

Fabricated Aluminum stair treads are available in Aluminum Flush Top SGF, Aluminum Rectangular Bar SG, Aluminum I-Bar SGI, Aluminum Dove Tail ADT, Aluminum Riveted AR and Aluminum Plank. Treads can be ordered with a plain or serrated surface.

Nosings for aluminum treads include a standard extruded grooved nose or cast aluminum abrasive nose. **Slip-Not**® nosings are also available in aluminum. Carrier end plates or angles (in the case of close mesh, 7/16" c.c. or 11/16" c.c., grating treads) are provided with a hole and slot for attachment to stringers. **Note:** Bolts for mounting to stringers not supplied.

Brigham YoungUniversity (detail)- Provo, UT

▲ Villamare - (detail)
- Hilton Head, SC

▲ Villamare - Hilton Head, SC

ALUMINUM TREADS

PRODUCT SPECIFICATION GUIDE

How to Specify:

The information below provides a specification format for architecturaland engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for Construction Specifications Canada (CSC) and the Technical Documents Committee of Construction Specifications Institute (CSI) for specifications serving the con-struction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating). 2.Aluminum: ASTM B221, Aluminum Alloy, Extruded Bars, Rods, Wire, Shapes and Tubing.

B.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and

Toll Free: 800-321-9800

details of sections and connections. Show type and location of all fasteners.

B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

PART 2: PRODUCT...

- Stair treads shall be of the same type and spacing as grating being specified. Stair treads shall be by Ohio Gratings, Inc. or approved equal.
- 2. Bearing Bar Size shall be based on tread length and shall be selected in accordance with the NAAMM Metal Bar Grating Manual.
- 3. Nosing: Grooved nosing (aluminum treads) or checkerplate nosing (steel treads). (Note: A cast aluminum abrasive nosing or a Slip-Not nosing for maximum skid resistance may be specified at the discretion of the architect/engineer.)
- 4. Carrier End Plates: Attached by welding in accordance with the NAAMM Metal Bar Grating Manual. (Note: Carrier angles should be specified in conjunction with close mesh grating treads.)

PART 3: EXECUTION...

3.1 Installation

A. Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.

B. Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.

- C. Cutting, Fitting and Placement.
- 1. Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.
- 2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.
- 3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.
- 4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.
- 5. Utilize standard panel widths wherever possible.
- **D.** Protection of Aluminum from Dissimilar Materials: 1. Where aluminum surfaces come into contact with dissimilar metals, surfaces shall be kept from direct contact by painting the dissimilar metal with one coat of bituminous paint or other approved insulating material.
- 2. Where aluminum surfaces come into contact with dissimilar materials such as concrete, masonry or lime mortar, exposed aluminum surfaces shall be painted with one coat of bituminous paint or other approved insulating material.

3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

Plank Series Cast Aluminum Abrasive Nosing

ALUMINUM APPLICATIONS

Product Applications

▲ Woodward - (detail)
- Detroit, MI

▲ ASLA - (detail)
- Washington, DC

▲ ASLA Headquarters
- Washington, DC

LIGHT DUTY STEEL

Features & Benefits...

Light Duty Steel grating is the workhorse of the industrial flooring market, finding applications in conveyor systems, operating plants, highways and bridge platforms and walkways, machinery floors, refineries, tank stairways and walkways, and power plants. The open grid construction of steel grating provides maximum passage for light, air circulation and drainage, while offering low installation and maintenance costs.

Ohio Gratings prides itself on offering the widest selection of Light Duty Steel grating available in the industry. As a stocking, fabricating distributor of electro forge welded steel grating, we inventory a wide variety of sizes and spacings for shipment in panel form, or for fabrication per plans and specs. Ohio Gratings specializes in engineering those tough jobs requiring intricate layout and fabrication.

In addition to fabricating standard electro forge welded steel grating, Ohio Gratings manufactures and fabricates Dove Tail pressure locked grating, Riveted Steel grating, and Swaged Carbon and Stainless Steel grating. Dove Tail pressure locked, Riveted and Swaged grating offer smoother lines and a more pleasing appearance than the typical welded grating. While still industrial in nature, these grating types may be more appropriate than welded grating for some applications. Please contact the factory for assistance in choosing the right Light Duty Steel grating for your particular application.

"Light Duty Steel Grating is the Workhorse of the Industrial Flooring Market."

Whether the requirement is for stock panels or custom fabrication "Made Right and Shipped When Promised", Ohio Gratings is the choice of a nationwide base of customers whose primary criteria are quality and service.

- ◆ Organic Technologies ▲
 - Coshocton, OH

LIGHT DUTY STEEL GRATING

Light Duty Welded Steel

Electroforging, a machine process combining hydraulic pressure and heat fusion, is the most popular and most economical method for manufacturing steel grating panels. Ohio Gratings maintains a generous inventory of 24" and 36" wide panels in standard bearing bar/cross bar spacings, and in special spacings, available for next day shipment or custom fabrication.

Steel Dove Tail

Traditionally designed, Dove Tail slot pressure locked grating, offers the high strength and stiffness of welded steel grating, along with the smooth, clean lines of a flush top rectangular cross bar. This grating is available in spacings which provide a 1/4" or 1/2" opening in conformance with provisions for the Americans With Disabilities Act (July 1991) for grating products.

Swaged Carbon Steel

By taking advantage of the most modern technology available, Ohio Gratings is able to offer Swaged Carbon Steel grating similar in construction to our aluminum bar grating products. Rectangular bearing bars and tubular cross bars are joined together via the swaging process. This manufacturing method offers smooth surfaces and clean lines, free from the warping and weld flash inherent in the electroforging process. ADA (July 1991) compliant spacings are also available.

Swaged Stainless Steel

For those applications requiring the corrosion resistance of stainless steel, Ohio Gratings offers a Swaged Stainless Steel grating in Types 304 and 316. As with our Swaged Carbon, this product is manufactured free of the warping, twisting and burn marks which are characteristic of electro forge welded stainless steel grating. Swaged Stainless is suitable for many industrial caustic and acidic environments. Please contact the factory for the suitability of Swaged Stainless in food service applications. ADA (July 1991) compliant spacings are also available.

Light Duty Riveted Steel

Riveted grating is the oldest style of industrial footwalk, but still the choice of many engineers due to its reliability and durability. Ohio Gratings manufactures and fabricates all popular sizes and spacings of riveted steel grating. As with all of its grating products, Riveted Steel grating by Ohio Gratings is produced with the emphasis on quality and timely service.

LIGHT DUTY DESIGN CRITERIA

The tables of safe loads which follow have been computed using the following design parameters:

U = Uniform Load - lbs/ft2

C = Concentrated Load - lbs/ft of grating width

S = Section Modulus - in³/ft of grating width

I = Moment of Inertia - in⁴/ft of grating width

L = Simple Clear Span - feet

D = Deflection - inches

E = Modulus of Elasticity (29,000,000 psi - carbon steel

28,000,000 psi - T-304 and T-316 stainless steel)

F = Allowable Bending Stress (18,000 psi - carbon steel

20,000 psi - T-304 and T-316 stainless steel)

Design Service

Available at no charge to the specifying architect/engineer or fabricator, is access to a computer program which provides uniform load and deflection (actual or fraction of span) analysis of grating products.

Just call, write or fax your design criteria – loading, span, allowable deflection, or grating size desired – and we will provide you with the information you require.

M = Bending Moment	LOAD	DEFLE DEFLE	LOAD	ET. OF WIDTH
	Uniform Load		Concentrated Load	
Step 1. Determine M:	$\mathbf{M} = \frac{FS}{12}$		$\mathbf{M} = \frac{FS}{12}$	
Step 2. Determine U or C:	$U = \frac{8M}{L^2}$		$C = \frac{4M}{L}$	
Step 3. Check D*:	$D = \frac{5UL (L \times 12)^3}{384 EI}$		$D = \frac{C (L \times 12)^3}{48 EI}$	

^{*}Deflection should be limited to 1/4" under 100# uniform load to afford pedestrian comfort.

Light Duty Steel Grating is best suited for use in conjunction with pedestrian traffic, and for light, rubber pneumatic tire-rolling traffic (carts, dollies and hand trucks). For other rolling loads (forklifts, cars, trucks, etc.) see the Heavy Duty Steel Grating section, page 71.

Information of a technical nature contained herein is intended only for evaluation by technically skilled persons, with any use thereof to be at their independent discretion and risk. Such information is reliable when evaluated in the proper manner under conditions as described herein. Ohio Gratings, Inc. shall have no responsibility or liability for results obtained or damages resulting from improper evaluation or use.

LIGHT DUTY WELDED STEEL

PRODUCT SPECIFICATION GUIDE

Plain Surface

How to Specify:

The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format

for Construction Specifications Canada (CSC) and the Technical

Documents Committee of Construction Specifications Institute (CSI) for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating). 2.Light Duty Steel: ASTM A1011 for hot rolled carbon steel sheet and strip. ASTM A510 for carbon steel wire rods and coarse round wire. ASTM A666 for stainless steel.

B.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show

type and location of all fasteners. **Serrated Surface**

B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details

PART 2: PRODUCT...

1. Grating: Light Duty Welded Steel W Series by Ohio Gratings, Inc., or approved equal.

2. Bearing Bars: Rectangular Bar on 13/16" centers maximum

with dove tail slots to accept cross bars. (Note: Other spacings may be specified at the discretion of the architect /engineer.)

- 3. Cross Bars: Electroforge welded at right angles to bearing bars at 4" centers maximum. (Note: 2" cross bar centers may be specified at the discretion of the architect /engineer.)
- 4. Surface: Plain (Note: A serrated surface may be specified at the discretion of the architect /engineer.)
- 5. Loading: Grating to carry a pedestrian loading equal to a uniform load of 100# per square foot over the required clear span with deflection not to exceed 1/4". (Note: alternate loading requirements may be specified at the discretion of the architect /engineer.)
- 6. Finish: (Galvanized or manufacturer's standard black paint at the discretion of the architect /engi-
- 7. Fabrication and Tolerances: in accordance with the NAAMM Metal Bar Grating Manual.

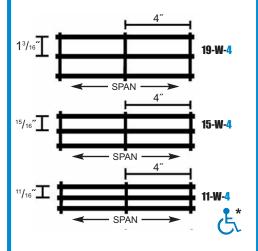
PART 3: EXECUTION...

3.1 Installation

A. Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.

B. Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.

- C. Cutting, Fitting and Placement.
- 1. Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.
- 2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.
- 3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.
- 4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.
- 5. Utilize standard panel widths wherever possible.


3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

Grating Profiles Available...

W Series - Light Duty Welded Steel

All profiles shown below are also available with 2" cross bar centers. Product numbers would be 19-W-2, 15-W-2 and 11-W-2

*Note: Conforms with the spacing requirements of ADA (July 1991) when installed with the elongated opening perpendicular to the dominant direction of travel. See ADA Guidelines

LIGHT DUTY WELDED STEEL APPLICATIONS

Product Applications...

Light duty steel grating is the workhorse of the industrial flooring market and is used for many different types of pedestrian (walking) applications. The open grid construction provides maximum passage for light, air circulation and drainage.

Electro forging, a machine process combining hydraulic pressure and heat fusion, is readily available and an economical method for manufacturing steel grating panels. The bearing bar surface can be ordered smooth or with a serrated surface for maximum skid resistance.

◆ Detail -North Carolina State Feed Mill

- Raleigh, NC

▲ Virginia Tech University
- Blacksburg, VA

Toll Free: 800-321-9800 45

STEEL DOVE TAIL

DT SERIES

PRODUCT SPECIFICATION GUIDE

Plain Surface

How to Specify:
The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the
Three-Part Section Format for

Construction Specifications Canada (CSC) and the Technical

Documents Committee of Construction Specifications Institute (CSI) for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating).

2. Light Duty Steel: ASTM A1011 for hot rolled carbon steel sheet and strip. ASTM A510 for carbon steel wire rods and coarse round wire. ASTM A666 for stainless steel.

B.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners.

Serrated Surface

B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

1. Grating: Steel Dove Tail DT
Series by Ohio Gratings,
Inc., or approved equal.
2. Bearing Bars:
Rectangular Bar on
13/16" centers maximum
with dove tail slots to
accept cross bars. (Note:
Other spacings may be specified at the discretion of the architect /engineer.)

- 3. Cross Bars: Rectangular bars, slotted and locked in dove tail fashion at right angles, and in the same plane as, the top surface of bearing bars. Spacing: 4" on center. (Note: 2" cross bar centers may be specified at the discretion of the architect /engineer.)
- 4. Surface: Plain (Note: A serrated surface may be specified at the discretion of the architect /engineer.)
- 5. Loading: Grating to carry a pedestrian loading equal to a uniform load of 100# per square foot over the required clear span with deflection not to exceed 1/4". (Note: alternate loading requirements may be specified at the discretion of the architect /engineer.)
- Finish: (galvanized or manufacturer's standard black paint at the discretion of the architect /engineer.)
 Fabrication and Tolerances: in accordance with the NAAMM Metal Bar Grating Manual.

PART 3: EXECUTION...

3.1 Installation

A. Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.

B. Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.

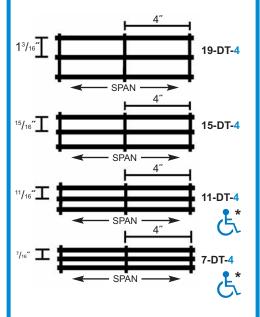
C. Cutting, Fitting and Placement.

Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.

2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and

accurately to size and weld a rectangular band bar of the same height and material as bearing bars.

- 3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.
- 4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.
- 5. Utilize standard panel widths wherever possible.


3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

Grating Profiles Available...

DT Series - Steel Dove Tail

All profiles shown below are also available with 2" cross bar centers. Product numbers would be 19-DT-2, 15-DT-2, 11-DT-2 and 7-DT-2

*Note: Conforms with the spacing requirements of ADA (July 1991) when installed with the elongated opening perpendicular to the dominant direction of travel. See ADA Guidelines

STEEL DOVE TAIL

DT SERIES

Product Applications...

Traditionally designed, Dove Tail slot pressure locked grating offers the high strength and stiffness of welded grating, along with the smooth, clean lines of a flush top rectangular cross bar. Bearing bars and cross bars are precision slotted, assembled in egg-crate fashion and hydraulically pressed together to form a tightly locked, rigidly stable panel grid. This grating is available in a wide variety of spacings including a 1/4" or 1/2" opening product, which conforms with provisions for the

"Americans With Disabilities Act" (July 1991). These products are part of our Grater Access line and are available with cross bars on 2" or 4" centers. This is also a popular style in the architectural community because of the aesthetic eye appeal of the product and the ability to maintain tighter tolerances. This style is also available in stainless steel. Slip resistant surfaces are available upon request.

St. Louis, MO

▲ Bear Creek
- Louisville, KY

Toll Free: 800-321-9800 47

SWAGED CARBON STEEL

SGCS SERIES

PRODUCT SPECIFICATION GUIDE

How to Specify: The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for Construction Specifications Canada (CSC) and the Technical Documents Committee of Construction Specifications **Plain Surface** Institute (CSI) for specifications serving the construction industry. These specifications are intended for use as a quide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating).

2. Light Duty Steel: ASTM A1011 for hot rolled carbon steel sheet and strip. ASTM A510 for carbon steel wire rods and coarse round wire. ASTM A666 for stainless steel.

B.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners.

B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

Serrated Surface

PART 2: PRODUCT...

1. Grating: Swaged Carbon Steel SGCS Series by Ohio Gratings, Inc., or approved equal.

2. Bearing Bars: Rectangular Bar on 13/16" centers maximum with dove tail slots to accept cross bars. (Note: Other spacings may be specified at the discretion of the

architect /engineer.)

3. Cross Bars: Carbon steel tubing mechanically locked by swaging at right angles to bearing bars at a maximum of 4" on center. (Note: 2" cross bar centers may be specified at the discretion of the architect /engineer.)

4. Surface: Plain (Note: A serrated surface may be specified at the discretion of the architect /engineer.)

5. Loading: Grating to carry a pedestrian loading equal to a uniform load of 100# per square foot over the required clear span with deflection not to exceed 1/4". (Note: alternate loading requirements may be specified at the discretion of the architect /engineer.)

6. Finish: (galvanized or manufacturer's standard black paint at the discretion of the architect /engineer.)7. Fabrication and Tolerances: in accordance with the NAAMM Metal Bar Grating Manual.

PART 3: EXECUTION...

3.1 Installation

A. Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.

B. Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual

C. Cutting, Fitting and Placement.

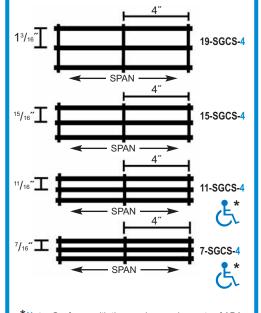
 Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.

2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.

3. Cutouts for circular obstructions are to be at least $2^{"}$ larger in diameter than the obstruction. Cutouts for all piping $4^{"}$ or less shall be made in the field.

4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.

5. Utilize standard panel widths wherever possible.


3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

Grating Profiles Available...

SGCS Series - Swaged Carbon Steel

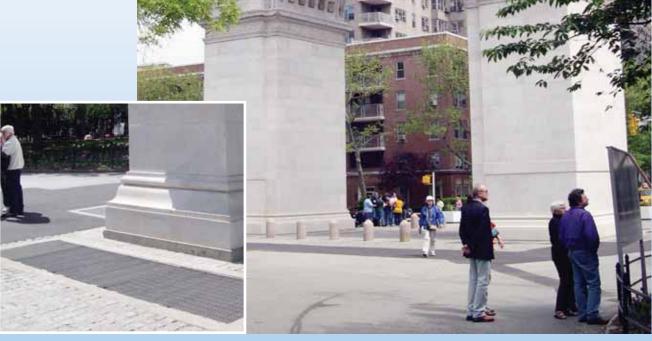
All profiles shown below are also available with 2" cross bar centers. Product numbers would be 19-SGCS-2, 15-SGCS-2, 11-SGCS-2 & 7-SGCS-2


*Note: Conforms with the spacing requirements of ADA (July 1991) when installed with the elongated opening perpendicular to the dominant direction of travel. See ADA Guidelines

SWAGED CARBON STEEL

Product Applications...

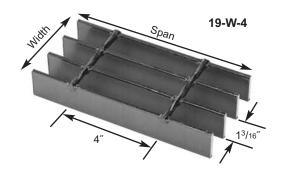
The swaging process allows the assembly of bar grating panels by mechanically locking the cross bars at right angles to the bearing bars. It provides the clean crisp lines of a recessed cross bar and eliminates the jagged weld flash inherent with welded bar grating.

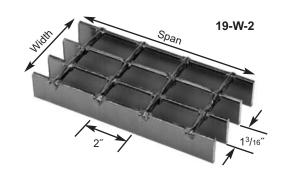


Additionally, the heat generated as part of the electro-forging process, limits how close together the bars may be placed. By using the most modern technology available, swaged bar grating is available in a wide variety of spacings including a 1/4" or 1/2" opening product, which conforms with provisions for the "Americans With Disabilities Act" (July 1991). Because of its aesthetic appeal and the ability to meet tight tolerances, this product is often used for architectural applications. Slip resistance surfaces are available upon request.

◆ Detail -- New York, NY

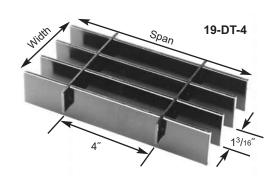
Washington Square ▲
- New York, NY

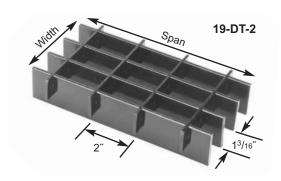



▲ Washington Square
- New York, NY

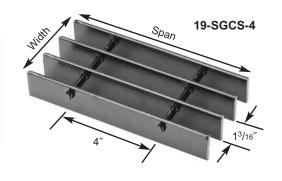
STEEL PROFILES

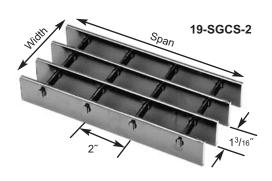
19 SPACE


STEEL LIGHT DUTY WELDED - 19-W-4 19-W-2



%	% Open Area*											
Bars	1/8"	3/16"										
4" cc	83%	77%										
2" cc	76%	71%										


STEEL DOVE TAIL - 19-DT-4 • 19-DT-2



% Open Area*												
Bars	1/8″	3/16"										
4" cc	86%	81%										
2" cc	84%	79%										

STEEL SWAGED CARBON - 19-SGCS-4 • 19-SGCS-2

% Open Area*											
Bars	1/8″	3/16"									
4" cc	83%	78%									
2" cc	76%	72%									

19 SPACE

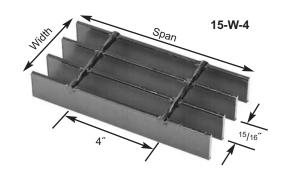
Load Tables - Light Duty Welded, Dove Tail & Swaged Carbon Steel

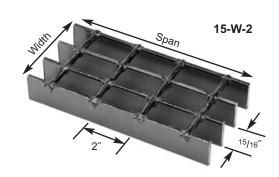
Bar	Ped	Wt.*	Sec. Prop							Clear	Span										
Size, Inches	Span, Inches	Lbs. Sq. Ft.	Sx*, in³ Ix*, in⁴		2′- 0″	2'- 6"	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5′- 0″	5′- 6″	6′- 0″	6′- 6″	7′- 0″	8′- 0″					
			0.178	U	533	341	237	174	133												
$^{3}/_{4} \times ^{3}/_{16}$	46	5.43	0.176	D	0.099	0.155	0.224	0.304	0.397		1	U - Safe uniform load in pounds/sq. ft.									
/4 X /10	70	0.40	0.067	С	533	426	355	305	266	1		C - Safe	concentr	ated load	in pour	nds/ft.					
			0.001	D	0.079 632	0.124	0.179	0.244	0.317	405	l	gratir	ng width		1						
. 4.			0.211	U D	0.075	404 0.116	281 0.168	206 0.228	158 0.298	125 0.378	1	D - Deflection in inches									
1 x ¹ /8	51	4.88		С	632	505	421	361	316	281											
			0.105	D	0.060	0.093	0.134	0.183	0.239	0.302											
			0.040	U	947	606	421	309	237	187	152]									
1 x ³ /16	57	7.04	0.316	D	0.074	0.116	0.168	0.228	0.298	0.377	0.467			and defl							
1 / / / / /	57	7.04	0.158	С	947	758	632	541	474	421	379			in this ta							
			0.100	D	0.060	0.093	0.134	0.182	0.239	0.302	0.372			tical, and							
			0.329	U D	987 0.060	632 0.093	439 0.134	322 0.182	247 0.239	0.302	158 0.373	130 0.449	unit st	ress of 1	8,000 ps	81.					
1 ¹ / ₄ x ¹ / ₈	61	5.96		С	987	789	658	564	493	439	395	359	-								
			0.206	D	0.048	0.074	0.107	0.146	0.191	0.242	0.298	0.361	1								
			0.400	U	1480	947	658	483	370	292	237	196	164	1							
1 ¹ / ₄ x ³ / ₁₆	67	0.04	0.493	D	0.060	0.093	0.134	0.182	0.238	0.301	0.373	0.451	0.535	1							
1 /4 X //16	67	8.64	0.308	С	1480	1184	987	846	740	658	592	538	493								
			0.300	D	0.048	0.074	0.107	0.146	0.191	0.241	0.298	0.360	0.429								
			0.474	U	1421	909	632	464	355	281	227	188	158	1							
1 ¹ / ₂ x ¹ / ₈	70	7.04		D C	0.050	0.078	0.112 947	0.152 812	0.198 711	0.252	0.310 568	0.376 517	0.447 474	-							
			0.355	D	1421 0.040	1137 0.062	0.089	0.122	0.159	0.201	0.248	0.301	0.358	-							
				U	2132	1364	947	696	533	421	341	282	237	202	1						
1 ¹ / ₂ x ³ / ₁₆		40.05	0.711	D	0.050	0.078	0.112	0.152	0.199	0.251	0.310	0.376	0.447	0.525	1						
1 72 X 7/16	77	10.25	0.533	С	2132	1705	1421	1218	1066	947	853	775	711	656	1						
			0.555	D	0.040	0.062	0.089	0.122	0.159	0.201	0.248	0.300	0.358	0.420							
			0.967	U	2901	1857	1289	947	725	573	464	384	322	275	237	181					
$1^{3}/4 \times {}^{3}/16$	87	11.87	0.007	D	0.043	0.067	0.096	0.130	0.170	0.215	0.266	0.322	0.383	0.450	0.522	0.680					
			0.846	C D	2901 0.034	2321 0.053	1934 0.077	1658 0.104	1451 0.136	1289 0.172	1160 0.213	1055 0.257	967 0.306	893 0.360	829 0.417	725 0.545					
				U	3789	2425	1684	1237	947	749	606	501	421	359	309	237					
0 11 3/11		40 :-	1.263	D	0.037	0.058	0.084	0.114	0.149	0.189	0.233	0.282	0.335	0.394	0.456	0.596					
2 x ³ /16	96	13.48	4.000	С	3789	3032	2526	2165	1895	1684	1516	1378	1263	1166	1083	947					
			1.263	D	0.030	0.047	0.067	0.091	0.119	0.151	0.186	0.225	0.268	0.315	0.365	0.477					
			1.599	U	4796	3069	2132	1566	1199	947	767	634	533	454	392	300					
2 ¹ /4 x ³ /16	105	15.08	1.555	D	0.033	0.052	0.074	0.101	0.132	0.168	0.207	0.250	0.298	0.350	0.406	0.530					
- / · / · / · / · /	100	10.00	1.798	С	4796	3837	3197	2741	2398	2132	1918	1744	1599	1476	1370	1199					
				D	0.026	0.041	0.060	0.081	0.106	0.134	0.165	0.200	0.238	0.280	0.324	0.424					
1. 2.		16.70						1.974	U D	5921 0.030	3789 0.047	2632 0.067	1933 0.091	1480 0.119	1170 0.151	947 0.186	783 0.225	658 0.268	561 0.315	483 0.365	370 0.477
$2^{1}/2 \times {}^{3}/16$	113			С	5921	4737	3947	3383	2960	2632	2368	2153	1974	1822	1692	1480					
			2.467	D	0.024	0.037	0.054	0.073	0.095	0.121	0.149	0.180	0.215	0.252	0.292	0.381					

^{*}Based on 10.105 bars/ft. of grating width. Bearing bars 13/16" c.c. Add .6 lbs./sq. ft. for 19-SGCS-2.

Note: Grating for spans to the left of the heavy line have a deflection less than 1/4" for uniform loads of 100 lbs./sq. ft. This is the maximum deflection to afford pedestrian comfort and can be exceeded for other types of load at the discretion of the engineer. The actual Ped (pedestrian) Span under this condition is shown above for each size of grating. When serrated grating is specified, the depth of grating required for a specific load will be 1/4" greater than that shown in these tables. 1/4" x 1/4" x 1/4" serrated grating is not available.

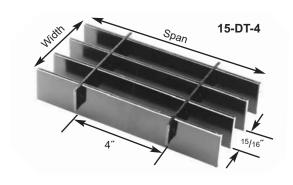
19-W4 / 19-W-2 - 19-DT-4 / 19-DT-2 - 19-SGCS-4 / 19-SGCS-2 Panel Width Chart (in.) Dimensions Are Out-to-Out of Bearing Bars**

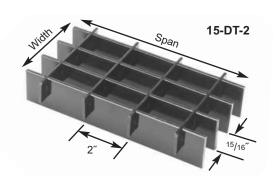

_																
	No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	³ /16" Bars	1 ³ /8	2 ⁹ /16	33/4	4 ¹⁵ /16	6 ¹ /8	7 ⁵ /16	8 ¹ / ₂	9 ¹¹ /16	10 ⁷ /8	12 ¹ /16	13 ¹ / ₄	14 ⁷ /16	15 ⁵ /8	16 ¹³ /16	18
	No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	³ /16" Bars	19 ³ /16	20 ³ /8	21 ⁹ /16	22 ³ / ₄	23 ¹⁵ /16	25 ¹ /8	26 ⁵ /16	27 ¹ / ₂	28 ¹¹ /16	29 ⁷ /8	31 ¹ /16	32 ¹ / ₄	33 ⁷ /16	34 ⁵ /8	35 ¹³ /16


^{**}Add 1/4" for extended cross bars. Deduct 1/16" for 1/8" bearing bars. Standard panel widths indicated in blue.

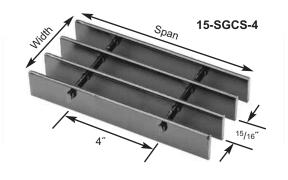
STEEL PROFILES

15 SPACE


STEEL LIGHT DUTY WELDED - 15-W-4 15-W-2



% Oper	% Open Area*											
4" cc	73%											
2" cc	67%											


STEEL DOVE TAIL - 15-DT-4 • 15-DT-2

% Oper	n Area*
4" cc	77%
2" cc	75%

STEEL SWAGED CARBON - 15-SGCS-4 • 15-SGCS-2

%	Ope	n Area*
4	cc	74%
2	cc	68%

15 SPACE

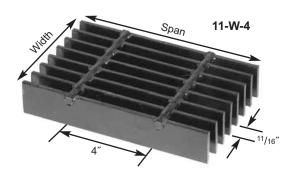
Load Tables - Light Duty Welded, Dove Tail & Swaged Carbon Steel

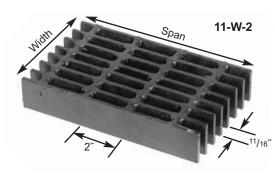
Bar	Ped	Wt.	Sec. Prop							Clear	Span							
Size, Inches	Span, Inches	Lbs. Sq. Ft.	Sx*, in³ lx*, in⁴		2'- 0"	2′- 6″	3′- 0″	3′- 6″	4'- 0"	4′- 6″	5′- 0″	5′- 6″	6′- 0″	6'- 6"	7′- 0″	8′- 0″		
			0.225	U	675	432	300	220	169	133		U - Safe	e uniform	load in	pounds/s	g. ft.		
³ /4 x ³ /16	49	7.11	0.225	D	0.099	0.155	0.223	0.304	0.398	0.502			e concent	ds/ft.				
74 A 710	49	/.!!	0.084	С	675	540	450	386	338	300			ing width					
			0.004	D	0.079	0.124	0.179	0.243	0.318	0.402		D - Def	lection in	n inches				
			0.400	U	1200	768	533	392	300	237	192	159	Loads	and def	lections			
1 x ³ /16	60	9.27	0.400	D	0.074	0.116	0.167	0.228	0.298	0.377	0.466	0.564		in this ta				
1 % 710			0.200	С	1200	960	800	686	600	533	480	436		etical, an				
			0.200	D	0.060	0.093	0.134	0.183	0.238	0.301	0.372	0.450	a unit	311033 0	10,000	ps1.		
			0.625	U	1875	1200	833	612	469	370	300	248	208					
1 ¹ /4 x ³ /16	71	11.43	0.023	D	0.060	0.093	0.134	0.182	0.238	0.301	0.372	0.451	0.535					
1 /4 / /10			0.391	С	1875	1500	1250	1071	938	833	750	682	625					
			0.551	D	0.048	0.074	0.107	0.146	0.191	0.241	0.298	0.361	0.429			,		
			0.900	U	2700	1728	1200	882	675	533	432	357	300	256	220			
$1^{1}/_{2} \times ^{3}/_{16}$	82	13.82	0.500	D	0.050	0.078	0.112	0.152	0.199	0.251	0.310	0.375	0.447	0.525	0.607			
1 /2 / /10			0.675	С	2700	2160	1800	1543	1350	1200	1080	982	900	831	771			
			0.070	D	0.040	0.062	0.089	0.122	0.159	0.201	0.248	0.300	0.358	0.420	0.486			
					1.225	U	3675	2352	1633	1200	919	726	588	486	408	348	300	230
1 ³ /4 x ³ /16	92	15.98	1.225	D	0.043	0.067	0.096	0.130	0.170	0.215	0.266	0.322	0.383	0.450	0.521	0.682		
1 /4 / /10		10.00	1.072	С	3675	2940	2450	2100	1838	1633	1470	1336	1225	1131	1050	919		
			1.072	D	0.034	0.053	0.077	0.104	0.136	0.172	0.213	0.257	0.306	0.360	0.417	0.545		
			1.600	U	4800	3072	2133	1567	1200	948	768	635	533	454	392	300		
2 x ³ /16	102	18.14	1.000	D	0.037	0.058	0.084	0.114	0.149	0.189	0.233	0.282	0.335	0.393	0.456	0.596		
2 X /10			1.600	С	4800	3840	3200	2743	2400	2133	1920	1745	1600	1477	1371	1200		
				D	0.030	0.047	0.067	0.091	0.119	0.151	0.186	0.225	0.268	0.315	0.365	0.477		
			2.025	U	6075	3888	2700	1984	1519	1200	972	803	675	575	496	380		
$2^{1}/4 \times {}^{3}/16$	111	20.16		D	0.033	0.052	0.074	0.101	0.132	0.168	0.207	0.250	0.298	0.350	0.406	0.530		
2 /4 / / 10		=00	2.278	С	6075	4860	4050	3471	3038	2700	2430	2209	2025	1869	1736	1519		
				D	0.026	0.041	0.060	0.081	0.106	0.134	0.166	0.200	0.238	0.280	0.324	0.424		
			2.500	U	7500	4800	3333	2449	1875	1481	1200	992	833	710	612	469		
$2^{1}/2 \times {}^{3}/16$	120	22.32		D	0.030	0.047	0.067	0.091	0.119	0.151	0.186	0.225	0.268	0.315	0.365	0.477		
Z /Z X /10			3.125	С	7500	6000	5000	4286	3750	3333	3000	2727	2500	2308	2143	1875		
				D	0.024	0.037	0.054	0.073	0.095	0.121	0.149	0.180	0.215	0.252	0.292	0.381		

^{*}Based on 12.8 bars/ft. of grating width. Bearing bars 15/16" c.c. Add .8 lbs./sq. ft. for 15-W-2. 1/s" bearing bars available by inquiry.

Note: Grating for spans to the left of the heavy line have a deflection less than 1/s" for uniform loads of 100 lbs./sq. ft. This is the maximum deflection to afford pedestrian comfort and can be exceeded for other types of load at the discretion of the engineer. The actual Ped (pedestrian) Span under this condition is shown above for each size of grating. When serrated grating is specified, the depth of grating required for a specific load will be 1/s" greater than that shown in these tables.

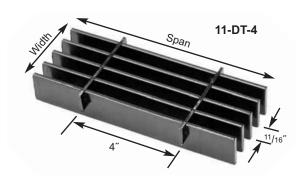
15-W-4 / 15-W-2 - 15-SGCS-4 / 15-DT-4 - 15-SGCS-2 / 15-DT-2 Panel Width Chart (in.) Dimensions Are Out-to-Out of Bearing Bars**

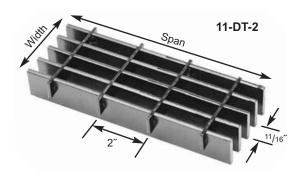

No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
3/16" Bars	1 ¹ /8	2 ¹ /16	3	3 ¹⁵ /16	4 ⁷ /8	5 ¹³ /16	6 ³ / ₄	7 ¹¹ /16	8 ⁵ /8	9 ⁹ /16	10 ¹ / ₂	11 ⁷ /16	12 ³ /8	13 ⁵ /16	14 ¹ / ₄
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
3/16" Bars	15 ³ /16	16 ¹ /8	17 ¹ /16	18	18 ¹⁵ /16	19 ⁷ /8	2013/16	21 ³ /4	2211/16	23 ⁵ /8	24 ⁹ /16	25 ¹ / ₂	26 ⁷ /16	27 ³ /8	28 ⁵ /16
No. of Bars	32	33	34	35	36	37	38	39							
3/16" Bars	29 ¹ / ₄	30 ³ /16	31 ¹ /8	32 ¹ / ₁₆	33	33 ¹⁵ / ₁₆	34 ⁷ /8	35 ¹³ /16							


**Deduct $^1/_{16}{^{\prime\prime}}$ for $^1/8{^{\prime\prime}}$ bearing bars. Standard panel widths indicated in blue.

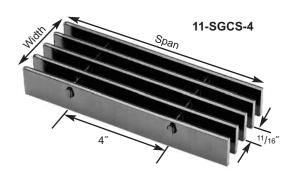
STEEL PROFILES

11 SPACE


STEEL LIGHT DUTY WELDED - 11-W-4 = 11-W-2



% Oper	% Open Area*											
4" cc	66%											
2" cc	57%											


STEEL DOVE TAIL - 11-DT-4 • 11-DT-2

% Ope	n Area*
4" cc	70%
2" cc	68%

STEEL SWAGED CARBON - 11-SGCS-4 11-SGCS-2

% Ope	n Area*
4" cc	67%
2" cc	62%

11 SPACE

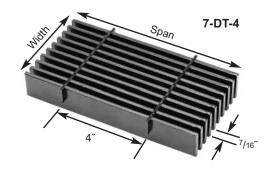
Load Tables - Light Duty Welded, Dove Tail & Swaged Carbon Steel

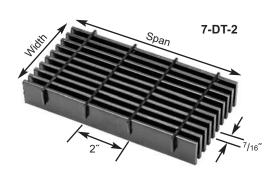
Bar	Ped	Wt.	Sec. Prop							Clear	Span					
Size, Inches	Span, Inches	Lbs. Sq. Ft.	Sx*, in³ lx*, in⁴		2′- 0″	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5′- 0″	5′- 6″	6′- 0″	6′- 6″	7′- 0″	8′- 0″
			0.307	U	920	589	409	301	230	182		U -	Safe unifo	orm load	in pounds	s/sq. ft.
³ /4 x ³ /16	53	9.28	0.307	D	0.099	0.155	0.223	0.305	0.397	0.503			Safe conc		oad in po	unds/ft.
74 X 710	33	9.20	0.445	С	920	736	614	526	460	409			grating wi			
			0.115	D	0.079	0.124	0.179	0.243	0.318	0.402		D -	Deflection	n in inche	es	
			0.545	U	1636	1047	727	534	409	323	262	216			ections are	
1 x ³ /16	65	12.16	0.545	D	0.074	0.116	0.168	0.228	0.298	0.377	0.466	0.562	of 18,0		d on a un	it stress
1 % 710		12.10	0.070	С	1636	1309	1091	935	818	727	655	595	01 10,0	700 psi.		
			0.273	D	0.060	0.093	0.134	0.182	0.238	0.302	0.373	0.451				
			0.050	U	2557	1636	1136	835	639	505	409	338	284	242	% Ope	n Area*
1 ¹ /4 x ³ / ₁₆	77	15.04	0.852	D	0.060	0.093	0.134	0.183	0.238	0.302	0.372	0.450	0.536	0.629	4" cc	66%
1 /4 / /10	ļ <i>'</i> '	10.04	0.500	С	2557	2046	1705	1461	1278	1136	1023	930	852	787	2" cc	57%
			0.533	D	0.048	0.075	0.107	0.146	0.191	0.241	0.298	0.361	0.429	0.504		
			4 007	U	3682	2356	1636	1202	920	727	589	487	409	349	301	230
1 ¹ /2 x ³ / ₁₆	89	18.28	1.227	D	0.050	0.078	0.112	0.152	0.199	0.251	0.310	0.376	0.447	0.525	0.609	0.794
1 /2 X /10	03	10.20	0.000	С	3682	2946	2455	2104	1841	1636	1473	1339	1227	1133	1052	920
			0.920	D	0.040	0.062	0.089	0.122	0.159	0.201	0.248	0.300	0.357	0.420	0.487	0.635
			4.070	U	5011	3207	2227	1636	1253	990	802	663	557	474	409	313
1 ³ /4 x ³ /16	99	21.16	1.670	D	0.043	0.066	0.096	0.130	0.170	0.215	0.266	0.322	0.383	0.449	0.521	0.681
1 74 X 716	99	21.10	4 400	С	5011	4009	3341	2864	2506	2227	2005	1822	1670	1542	1432	1253
			1.462	D	0.034	0.053	0.077	0.104	0.136	0.172	0.213	0.257	0.306	0.360	0.417	0.545
			0.400	U	6546	4189	2909	2137	1636	1293	1047	866	727	620	534	409
2 x ³ / ₁₆	110	24.04	2.182	D	0.037	0.058	0.084	0.114	0.149	0.189	0.233	0.282	0.335	0.394	0.456	0.596
Z X 3/16	110	24.04	0.400	С	6546	5237	4364	3740	3273	2909	2618	2380	2182	2014	1870	1636
			2.182	D	0.030	0.047	0.067	0.091	0.119	0.151	0.186	0.225	0.268	0.315	0.365	0.477
			0.704	U	8284	5302	3682	2705	2071	1636	1325	1095	920	784	676	518
21/ 3/	400	00.74	2.761	D	0.033	0.052	0.074	0.101	0.132	0.168	0.207	0.250	0.298	0.350	0.405	0.530
$2^{1}/4 \times {}^{3}/16$	120	26.74		С	8284	6627	5523	4734	4142	3682	3314	3012	2761	2549	2367	2071
			3.107	D	0.026	0.041	0.060	0.081	0.106	0.134	0.166	0.200	0.238	0.280	0.324	0.424
			0.405	U	10228	6546	4546	3340	2557	2020	1636	1352	1136	968	835	639
01/ 3/	400	00.0-	3.409	D	0.030	0.047	0.067	0.091	0.119	0.151	0.186	0.225	0.268	0.315	0.365	0.477
$2^{1}/2 \times {}^{3}/16$	130	29.62		С	10228	8182	6818	5844	5114	4546	4091	3719	3409	3147	2922	2557
			4.261	D	0.024	0.037	0.054	0.073	0.095	0.121	0.149	0.180	0.214	0.252	0.292	0.381

11-W-4 / 11-	Dimensions Are Out-to-Out of Bearing Bars														
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
3/16" Bars	7/8	1 ⁹ /16	2 ¹ / ₄	2 ¹⁵ /16	3 ⁵ /8	4 ⁵ /16	5	5 ¹¹ /16	6 ³ /8	7 ¹ /16	73/4	8 ⁷ /16	9 ¹ /8	9 ¹³ /16	10 ¹ /2
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
3/16" Bars	11 ³ /16	11 ⁷ /8	12 ⁹ /16	13 ¹ / ₄	13 ¹⁵ /16	14 ⁵ /8	15 ⁵ /16	16	16 ¹¹ /16	17 ³ /8	18 ¹ /16	18 ³ /4	19 ⁷ /16	20 ¹ /8	2013/16
No. of Bars	32	33	34	35											
3/16" Bars	21 ¹ / ₂	22 ³ /16	22 ⁷ /8	23 ⁹ /16											

^{**}Deduct 1/16" for 1/8" bearing bars. Standard panel widths indicated in blue.

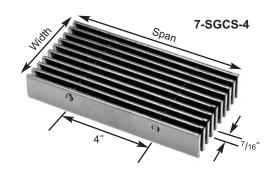
11-SGCS-4 / 11-SGCS-2 & 11-DT-4 / 11-DT-2 Panel Width Chart (in.) Dimensions Are Out-to-Out of Bearing Bars**

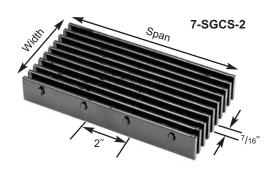

No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
3/16" Bars	7/8	1 ⁹ /16	2 ¹ / ₄	2 ¹⁵ /16	3 ⁵ /8	4 ⁵ /16	5	5 ¹¹ /16	6 ³ /8	7 ¹ /16	73/4	8 ⁷ /16	9 ¹ /8	9 ¹³ /16	10 ¹ /2
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
3/16" Bars	11 ³ /16	11 ⁷ /8	12 ⁹ /16	13 ¹ / ₄	13 ¹⁵ /16	14 ⁵ /8	15 ⁵ /16	16	16 ¹¹ / ₁₆	17 ³ /8	18 ¹ /16	18 ³ / ₄	19 ⁷ /16	20 ¹ /8	20 ¹³ /16
No. of Bars	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
³ /16" Bars	21 ¹ / ₂	22 ³ /16	22 ⁷ /8	23 ⁹ /16	24 ¹ / ₄	24 ¹⁵ /16	25 ⁵ /8	26 ⁵ /16	27	2711/16	28 ³ /8	29 ¹ / ₁₆	29 ³ / ₄	30 ⁷ /16	31 ¹ /8
No. of Bars	47	48	49	50	51	52	53								
3/16" Bars	31 ¹³ / ₁₆	32 ¹ / ₂	33 ³ /16	33 ⁷ /8	34 ⁹ /16	35 ¹ / ₄	35 ¹⁵ /16								


^{**}Add 1/4" for extended cross bars. Deduct 1/16" for 1/8" bearing bars. Standard panel widths indicated in blue.

STEEL PROFILES

7 SPACE


STEEL DOVE TAIL - 7-DT-4 • 7-DT-2



% Ope	n Area*
4" cc	55%
2" cc	53%

STEEL SWAGED CARBON - 7-SGCS-4 • 7-SGCS-2

% Oper	n Area*
4" cc	52%
2" cc	48%

7 SPACE

Load Tables - Dove Tail & Swaged Carbon Steel

Bar	Ped	Wt.* Lbs.	Sec. Prop							Clear	Span					
Size, Inches	Span, Inches	Sq. Ft.	Sx*, in³ lx*, in⁴		2′- 0″	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5′- 0″	5′- 6″	6′- 0″	6′- 6″	7′- 0″	8′- 0″
			0.482	U	1446	926	643	472	362	286	231			d in pounds/s		
$^{3}/_{4} \times ^{3}/_{16}$	59	13.73	0.462	D	0.099	0.155	0.223	0.304	0.398	0.503	0.620			l load in pou	nds/ft.gratin	g width
/4 X /10	55	13.73	0.181	С	1446	1157	964	827	723	643	579		ection in incl nd deflection	ies is are theore	tical and ba	sed on a
			0.161	D	0.079	0.124	0.179	0.243	0.318	0.402	0.497		s of 18,000			
			0.857	U	2571	1646	1143	840	643	508	411	340	286	0/	On an A	***
1 x ³ /16	73	18.09	0.657	D	0.074	0.116	0.168	0.228	0.298	0.377	0.465	0.563	0.671		Open A	2%
1 / / 10	73	10.09	0.429	С	2571	2057	1714	1469	1286	1143	1029	935	857			8%
			0.429	D	0.060	0.093	0.134	0.182	0.238	0.302	0.373	0.451	0.536			-
			1.339	U	4018	2571	1786	1312	1004	794	643	531	446	380	328	251
1 ¹ / ₄ x ³ / ₁₆	86	22.45	1.559	D	0.060	0.093	0.134	0.182	0.238	0.302	0.372	0.450	0.536	0.629	0.730	0.953
1 /4 / /10	00	22.43	0.837	С	4018	3214	2679	2296	2009	1786	1607	1461	1339	1236	1148	1004
			0.837	D	0.048	0.074	0.107	0.146	0.191	0.241	0.298	0.360	0.429	0.503	0.584	0.762
			1.929	U	5786	3703	2571	1889	1446	1143	926	765	643	548	472	362
$1^{1}/2 \times {}^{3}/16$	99	26.81	1.929	D	0.050	0.078	0.112	0.152	0.199	0.251	0.310	0.375	0.447	0.525	0.608	0.795
1 /2 A / 10	99	20.01	1 116	С	5786	4629	3857	3306	2893	2571	2314	2104	1929	1780	1653	1446
			1.446	D	0.040	0.062	0.089	0.122	0.159	0.201	0.248	0.300	0.358	0.420	0.487	0.635
			0.605	U	7875	5040	3500	2571	1969	1556	1260	1041	875	746	643	492
1 ³ /4 x ³ /16	111	31.20	2.625	D	0.043	0.067	0.096	0.130	0.170	0.216	0.266	0.322	0.383	0.450	0.521	0.681
1 /4 / /10	111	31.20	0.007	С	7875	6300	5250	4500	3938	3500	3150	2864	2625	2423	2250	1969
			2.297	D	0.034	0.053	0.077	0.104	0.136	0.172	0.213	0.258	0.306	0.360	0.417	0.545
			0.400	U	10286	6583	4572	3359	2571	2032	1646	1360	1143	974	840	643
2 x ³ /16	123	35.59	3.429	D	0.037	0.058	0.084	0.114	0.149	0.189	0.233	0.282	0.335	0.393	0.456	0.596
2 X /10	123	33.39	2.400	С	10286	8229	6857	5878	5143	4572	4114	3740	3429	3165	2939	2571
			3.429	D	0.030	0.047	0.067	0.091	0.119	0.151	0.186	0.225	0.268	0.315	0.365	0.477
			4.000	U	13018	8332	5786	4251	3255	2571	2083	1721	1446	1232	1063	814
$2^{1}/4 \times {}^{3}/16$	134	39.92	4.339	D	0.033	0.052	0.074	0.101	0.132	0.168	0.207	0.250	0.298	0.350	0.406	0.530
2 /4 X /10	134	39.92	4.000	С	13018	10414	8679	7439	6509	5786	5207	4734	4339	4006	3719	3255
			4.882	D	0.026	0.041	0.060	0.081	0.106	0.134	0.166	0.200	0.238	0.280	0.324	0.424
			E 057	U	16072	10286	7143	5248	4018	3175	2571	2125	1786	1522	1312	1004
$2^{1}/2 \times {}^{3}/16$	145	44.31	5.357	D	0.030	0.047	0.067	0.091	0.119	0.151	0.186	0.225	0.268	0.315	0.365	0.476
2 /2 X /16	145	44.31	0.007	С	16072	12857	10714	9184	8036	7143	6429	5844	5357	4945	4592	4018
			6.697	D	0.024	0.037	0.054	0.073	0.095	0.121	0.149	0.180	0.215	0.252	0.292	0.381

^{*}Based on 27.429 bars/ft. of grating width. Bearing bars 7/16" c.c. Add .6 lbs./sq. ft. for 7-SGCS-2. 1/8" bearing bars available by inquiry.

Note: Grating for spans to the left of the heavy line have a deflection less than ½" for uniform loads of 100 lbs./sq. ft. This is the maximum deflection to afford pedestrian comfort and can be exceeded for other types of load at the discretion of the engineer. The actual Ped (pedestrian) Span under this condition is shown above for each size of grating.

When serrated grating is specified, the depth of grating required for a specific load will be 1/4" greater than that shown in these tables. 1/4" x 1/16" serrated grating is not available.

7-SGCS-4 / 7-SGCS-2 & 7-DT-4 / 7-DT-2 Panel Width Chart (in.) Dimensions Are Out-to-Out of Bearing Bars**															
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
3/16" Bars	5/8	1 ¹ /16	1 ¹ /2	1 ¹⁵ /16	2 ³ /8	2 ¹³ /16	31/4	3 ¹¹ /16	4 ¹ /8	4 ⁹ /16	5	5 ⁷ /16	5 ⁷ /8	6 ⁵ /16	63/4
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
3/16" Bars	73/16	7 ⁵ /8	8 ¹ / ₁₆	8 ¹ / ₂	8 ¹⁵ /16	93/8	9 ¹³ /16	10 ¹ / ₄	10 ¹¹ /16	11 ¹ /8	11 ⁹ /16	12	12 ⁷ /16	12 ⁷ /8	13 ⁵ /16
No. of Bars	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
3/16" Bars	13 ³ / ₄	14 ³ /16	14 ⁵ /8	15 ¹ /16	15 ¹ / ₂	15 ¹⁵ /16	16 ³ /8	16 ¹³ /16	17 ¹ / ₄	17 ¹¹ /16	18 ¹ /8	18 ⁹ /16	19	19 ⁷ /16	19 ⁷ /8
No. of Bars	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
3/16" Bars	20 ⁵ /16	20 ³ / ₄	21 ³ /16	21 ⁵ /8	22 ¹ /16	22 ¹ / ₂	22 ¹⁵ /16	23 ³ /8	23 ¹³ /16	24 ¹ / ₄	24 11/16	25 ¹ /8	25 ⁹ /16	26	26 ⁷ /16
No. of Bars	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
3/16" Bars	26 ⁷ /8	27 ⁵ /16	273/4	28 ³ /16	28 ⁵ /8	29 ¹ / ₁₆	29 ¹ / ₂	29 ¹⁵ /16	30 ³ /8	3013/16	31 ¹ / ₄	31 ¹¹ / ₁₆	32 ¹ /8	32 ⁹ /16	33
No. of Bars	77	78	79	80	81	82	83								
3/16" Bars	33 ⁷ /16	33 ⁷ /8	34 ⁵ /16	343/4	35 ³ /16	35 ⁵ /8	36 ¹ /16								

^{**}Add 1/4" for extended cross bars. Deduct 1/16" for 1/8" bearing bars. Standard panel widths indicated in blue.

LIGHT DUTY RIVETED STEEL

R SERIES

PRODUCT SPECIFICATION GUIDE

How to Specify:

The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for Construction Specifications

Construction Specifications
Canada (CSC) and the Technical Documents
Committee of Construction Specifications
Institute (CSI) for specifications serving the
construction industry. These specifications are
intended for use as a guide spec for architects
and engineers, and may need to be altered or
modified to fit the specific conditions of the
application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

- A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating).

 2. Light Duty Steel: ASTM A1011 for hot rolled carbon steel sheet and strip. ASTM A510 for carbon steel wire rods and coarse round wire. ASTM A666 for stainless steel.
- **B**.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners.

ype and location of all fasteners. **B.** The contractor shall submit the manufacturer's

Serrated Surface

specifications, load tables, anchor details and standard installation details.

PART 2: PRODUCT...

1. Grating: Light Duty Riveted Steel R Series by Ohio Gratings, Inc., or approved equal.

2. Bearing Bars: Rectangular Bar spaced 11/8" between bar faces maximum. (Note: 3/4" spacing may be specified at the discretion of the architect /engineer.)

- 3. Connecting Bars: Extending between bearing bars and riveted to bearing bars at 7" centers. (Note: 3'/2" rivet centers may be specified for maximum lateral stability.)
- 4. Surface: Plain (Note: a serrated connecting bar may be specified for maximum skid resistance.) 5. Loading: Grating to carry a pedestrian loading equal to a uniform load of 100# per square foot over the required clear span with deflection not to exceed 1/4". (Note: alternate loading requirements may be specified at the discretion of the architect /engineer.)
- 6. Finish: Galvanized or manufacturer's standard black paint at the discretion of the architect/engineer. 7. Fabrication and Tolerances: in accordance with the NAAMM Metal Bar Grating Manual.

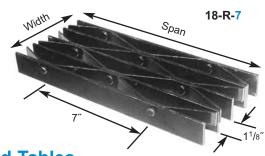
PART 3: EXECUTION...

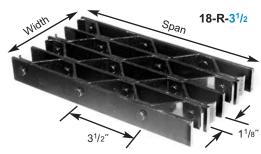
3.1 Installation

- **A.** Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.
- **B.** Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.
- **C.** Cutting, Fitting and Placement.
- 1. Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.
- 2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.

- 3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.
- 4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.
- 5. Utilize standard panel widths wherever possible.

3.2 Grating Attachment


Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.


Grating Profiles Available... R Series - Light Duty Riveted Steel 11/8" 18-R-7 3/4" 12-R-7 12-R-3.5

LIGHT DUTY RIVETED STEEL

18 SPACE

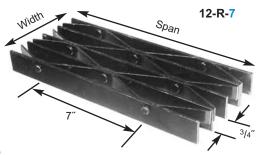
Load Tables

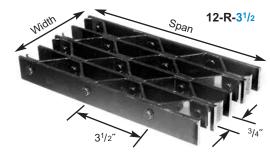
Bar Size.	Ped Span,	Wt. Lbs.	Sec. Prop Sx*, in ³							Clear	Span					
Inches	Inches	Sq. Ft.	lx*, in ⁴		2′- 0″	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5′- 0″	5′- 6″	6′- 0	6′- 6″	7′- 0″	8′- 0″
			0.204	U	613	392	272	200	153	121		II - Sa	fe unifo	orm load in	pounds/s	sa ft
$^{3}/_{4} \times ^{3}/_{16}$	48	7.80	0.204	D	0.099	0.155	0.223	0.304	0.397	0.503				entrated loa		
/4 X /10	10	7.00	0.077	С	613	490	409	350	306	272			ating wi		a in pour	100/11.
			0.011	D	0.079	0.124	0.179	0.243	0.317	0.402		_	_	in inches		
			0.242	U D	726	465	323	237	182	143		D-DC	JIICCTIOI.	i iii iiiciics		
1 x ¹ /8	53	7.60		С	0.074 726	0.116 581	0.168 484	0.228	0.299	0.376 323				lections are		
			0.121	D	0.060	0.093	0.134	0.182	0.238	0.302		are bas	sed on a	unit stress	of 18,000	psi.
				U	1089	697	484	356	272	215	174	1	-			
4 3,			0.363	D	0.074	0.116	0.168	0.228	0.298	0.377	0.465		- 1		oen Area	
1 x ³ /16	59	9.40		C	1089	872	726	623	545	484	436		- 1	Bars	1/8″	³ /16″
			0.182	D	0.060	0.093	0.134	0.183	0.238	0.302	0.373				78%	74%
				U	1135	726	504	371	284	224	182	150	l L	3 ¹ /2" cc	77%	73%
1 ¹ / ₄ x ¹ / ₈	00	0.70	0.378	D	0.060	0.093	0.134	0.183	0.239	0.301	0.373	0.450				
1 '/4 X '/8	63	8.70	0.000	С	1135	908	757	648	567	504	454	413				
			0.236	D	0.048	0.074	0.107	0.146	0.191	0.241	0.298	0.361		BB Siz	e, CBS	Size, in.
			0.567	U	1702	1089	757	556	426	336	272	225	189			pacings
$1^{1}/4 \times {}^{3}/16$	70	11.00	0.567	D	0.060	0.093	0.134	0.183	0.239	0.301	0.372	0.450	0.536			x ¹ /8
1 /4 X /10	10	11.00	0.355	С	1702	1362	1135	973	851	757	681	619	567		/2 1	x ¹ /8
			0.555	D	0.048	0.074	0.107	0.146	0.191	0.241	0.298	0.360	0.429		1	— 1
			0.545	U	1634	1046	726	534	409	323	261	216	182			
$1^{1}/_{2} \times ^{1}/_{8}$	72	9.90	0.040	D	0.050	0.078	0.112	0.152	0.199	0.252	0.310	0.375	0.448			
. , , .	. –		0.409	С	1634	1307	1089	934	817	726	654	594	545		-	
			01100	D	0.040	0.062	0.089	0.122	0.159	0.201 484	0.248 392	0.300	0.358		200	ا ٦
.4. 0.			0.817	U D	2451 0.050	1569 0.078	1089 0.112	800 0.152	613 0.199	0.251	0.310	324 0.375	0.446		200 0.608	-
1 ¹ /2 x ³ /16	80	12.50		С	2451	1961	1634	1401	1226	1089	981	891	817		700	-
			0.613	D	0.040	0.062	0.089	0.122	0.159	0.201	0.248	0.300	0.357		0.486	-
				U	3336	2135	1483	1089	834	659	534	441	371		272	209
431. 31			1.112	D	0.043	0.066	0.096	0.130	0.170	0.215	0.266	0.322	0.383		0.521	0.683
$1^{3}/4 \times {}^{3}/16$	90	14.20		C	3336	2669	2224	1907	1668	1483	1335	1213	1112		953	834
			0.973	D	0.034	0.053	0.077	0.104	0.136	0.172	0.213	0.257	0.306		0.417	0.545
			4.450	U	4358	2789	1937	1423	1089	861	697	576	484		356	272
$2 \times \frac{3}{16}$	99	16.80	1.453	D	0.037	0.058	0.084	0.114	0.149	0.189	0.233	0.282	0.335	5 0.394	0.457	0.595
Z X 1/16	99	10.80	1.453	С	4358	3486	2905	2490	2179	1937	1743	1585	1453		1245	1089
			1.453	D	0.030	0.047	0.067	0.091	0.119	0.151	0.186	0.225	0.268		0.365	0.476
			1.838	U	5515	3530	2451	1801	1379	1089	882	729	613		450	345
$2^{1}/4 \times {}^{3}/16$	108	18.30	1.000	D	0.033	0.052	0.074	0.101	0.132	0.168	0.207	0.250	0.298		0.405	0.530
_ / · X / 10	100	10.00	2.068	С	5515	4412	3677	3152	2758	2451	2206	2006	1838		1576	1379
			2.000	D	0.026	0.041	0.060	0.081	0.106	0.134	0.166	0.200	0.238		0.324	0.424
			2.270	U	6809	4358	3026	2223	1702	1345	1089	900	757		556	426
$2^{1}/2 \times {}^{3}/16$	117	19.90		D	0.030	0.047	0.067	0.091	0.119	0.151	0.186	0.225	0.268		0.365	0.477
			2.837	С	6809	5447	4539	3891	3405	3026	2724	2476	2270		1945	1702
				D	0.024	0.037	0.054	0.073	0.095	0.121	0.149	0.180	0.215	0.252	0.292	0.381

*Based on 11.621 bars/ft. of grating width. Bearing bars 11/4" face-to-face, connecting bars riveted 7" c.c. Add. 4 lbs,/sq. ft. for 18-R-3½. Note: Grating for spans to the left of the heavy line have a deflection less than ½" for uniform loads of 100 lbs,/sq. ft. This is the maximum deflection to afford pedestrian confort and can be exceeded for other types of load at the discretion of the engineer. The actual Ped (pedestrian) Span under this condition is shown above for each size of grating.

18-R-7 / 18-R-3¹/₂ Panel Width Chart (in.)

Dimensions Are Out-to-Out of Bearing Bars**


					()										
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
³ /16" Bars	11/2	2 ¹³ /16	4 ¹ /8	5 ⁷ /16	6 ³ / ₄	8 ¹ /16	9 ³ /8	10 ¹¹ / ₁₆	12	13 ⁵ /16	14 ⁵ /8	15 ¹⁵ /16	17 ¹ /4	18 ⁹ /16	19 ⁷ /8
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28			
³ /16" Bars	21 ³ /16	22 ¹ / ₂	23 ¹³ /16	25 ¹ /8	26 ⁷ /16	273/4	29 ¹ /16	303/8	31 ¹¹ / ₁₆	33	34 ⁵ /16	35 ⁵ /8			


^{**}Add $^{1/4}$ " for rivet heads. Deduct $^{1/16}$ " for each $^{1/8}$ " bearing bar. Standard panel widths indicated in blue.

Toll Free: 800-321-9800 59

LIGHT DUTY RIVETED STEEL

12 SPACE

Load Tables

Bar	Ped	Wt.	Sec. Prop							Clear	Span					
Size, Inches	Span, Inches	Lbs. Sq. Ft.	Sx*, in³ Ix*, in⁴		2′- 0″	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5′- 0″	5′- 6″	6′- 0″	6′- 6″	7′- 0″	8′- 0″
			0.286	U	858	549	381	280	214	169	U - Safe	uniform l	oad in pou	ınds/ sq.ft	. % On	en Area
³ /4 x ³ /16	52	10.70	0.286	D	0.099	0.155	0.223	0.304	0.396	0.501		concentrat	ted load in	pounds/f		3/16"
74 X 716	52	10.70	0.107	С	858	686	572	490	429	381		ng width			7" cc	65%
			0.107	D	0.079	0.124	0.179	0.243	0.318	0.402	D - Defle	ection in i	nches		31/2" cc	64%
			0.508	U	1525	976	678	498	381	301	244	202				
1 x ³ /16	64	12.80	0.506	D	0.074	0.116	0.168	0.228	0.298	0.377	0.465	0.564			ections ar	
1 7 / 10	01	12.00	0.254	С	1525	1220	1017	872	763	678	610	555		and are of 18,000	based on	a unit
			0.254	D	0.060	0.093	0.134	0.183	0.238	0.302	0.372	0.451	5005		, psi.	
			0.794	J	2383	1525	1059	778	596	471	381	315	265	226		
1 ¹ /4 x ³ /16	76	15.00	0.794	D	0.060	0.093	0.134	0.182	0.238	0.302	0.372	0.450	0.537	0.630		
1 /4 A /10	70	10.00	0.496	С	2383	1907	1589	1362	1192	1059	953	867	794	733		
			0.490	D	0.048	0.075	0.107	0.146	0.191	0.241	0.298	0.361	0.429	0.503		_
			1.144	U	3432	2196	1525	1121	858	678	549	454	381	325	280	214
1 ¹ /2 x ³ /16	87	17.10	1.144	D	0.050	0.078	0.112	0.152	0.199	0.251	0.310	0.376	0.447	0.525	0.608	0.793
1 /2 X /10	01	17.10	0.858	O	3432	2745	2288	1961	1716	1525	1373	1248	1144	1056	980	858
				ם	0.040	0.062	0.089	0.122	0.159	0.201	0.248	0.300	0.358	0.420	0.486	0.636
			1.557	U	4671	2989	2076	1525	1168	923	747	618	519	442	381	292
1 ³ /4 x ³ / ₁₆	98	19.40	1.557	D	0.043	0.066	0.096	0.130	0.170	0.216	0.266	0.322	0.383	0.449	0.521	0.681
1 /4 X /16	90	19.40	1.362	C	4671	3737	3114	2669	2335	2076	1868	1699	1557	1437	1335	1168
			1.302	D	0.034	0.053	0.077	0.104	0.136	0.172	0.213	0.258	0.306	0.360	0.417	0.545
			2.034	כ	6101	3905	2712	1992	1525	1205	976	807	678	578	498	381
2 x ³ /16	108	22.90	2.034	D	0.037	0.058	0.084	0.114	0.149	0.189	0.233	0.282	0.335	0.394	0.456	0.595
Z X /16	100	22.90	2.034	С	6101	4881	4067	3486	3050	2712	2440	2219	2034	1877	1743	1525
			2.034	D	0.030	0.047	0.067	0.091	0.119	0.151	0.186	0.225	0.268	0.315	0.365	0.477
			2 574	J	7721	4942	3432	2521	1930	1525	1235	1021	858	731	630	483
2 ¹ /4 x ³ / ₁₆	118	25.00	2.574	D	0.033	0.052	0.074	0.101	0.132	0.168	0.207	0.250	0.298	0.350	0.405	0.530
∠ /4 X ⁻ /16	110	25.00	2.896	С	7721	6177	5148	4412	3861	3432	3089	2808	2574	2376	2206	1930
			2.090	D	0.026	0.041	0.060	0.081	0.106	0.134	0.166	0.200	0.238	0.280	0.324	0.424
			3.178	U	9533	6101	4237	3113	2383	1883	1525	1261	1059	902	778	596
21/2 1/3/	100	27.20	3.176	D	0.030	0.047	0.067	0.091	0.119	0.151	0.186	0.225	0.268	0.315	0.365	0.477
$2^{1}/2 \times {}^{3}/16$	128	27.20	3.972	С	9533	7626	6355	5447	4766	4237	3813	3466	3178	2933	2724	2383
			3.812	D	0.024	0.037	0.054	0.073	0.095	0.121	0.149	0.180	0.215	0.252	0.292	0.381

*Based on 16.269 bars/ft, of grating width. Bearing bars \(^3\)4" face-to-face, connecting bars riveted \(^7\)" c.c. Add \(^4\) lbs./sq. ft. for 12-R-3\). Note: Grating for spans to the left of the heavy line have a deflection less than \(^1/4\)" for uniform loads of 100 lbs./sq, ft. This is the maximum deflection to afford pedestrian comfort and can be exceeded for other types of load at the discretion of the engineer. The actual Ped (pedestrian) Span under this condition is shown above for each size of grating.

12-R-7 / 12-R-31/2 Panel Width Chart (in.)

Dimensions Are Out-to-Out of Bearing Bars**

					`	,									
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
³ /16" Bars	1 ¹ /8	2 ¹ /16	3	3 ¹⁵ /16	4 ⁷ /8	5 ¹³ /16	63/4	7 ¹¹ /16	8 ⁵ /8	9 ⁹ /16	10 ¹ / ₂	11 ⁷ /16	12 ³ /8	13 ⁵ /16	14 ¹ / ₄
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
³ /16" Bars	15 ³ /16	16 ¹ /8	17 ¹ /16	18	18 ¹⁵ /16	19 ⁷ /8	2013/16	21 ³ / ₄	2211/16	23 ⁵ /8	24 ⁹ /16	25 ¹ / ₂	26 ⁷ /16	27 ³ /8	28 ⁵ /16
No. of Bars	32	33	34	35	36	37	38	39							
³ /16" Bars	29 ¹ / ₄	30 ³ /16	31 ¹ /8	32 ¹ /16	33	33 ¹⁵ /16	34 ⁷ /8	35 ¹³ /16							

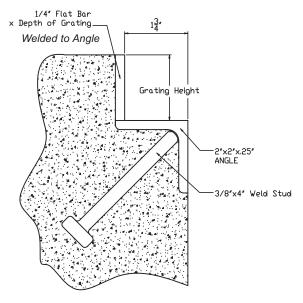
^{**}Add $^{1}/_{4}$ " for rivet heads. Deduct $^{1}/_{16}$ " for each $^{1}/_{8}$ " bearing bar. Standard panel widths indicated in blue.

STEEL GRATING FRAMES

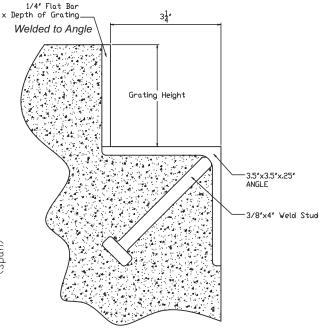
In conjunction with both Light and Heavy Duty steel grating, Ohio Gratings offers a welded steel grating frame for embedded concrete applications.


Embed frames cast into concrete floors and substructures serve a multitude of purposes that extend the life of any project where open flooring is required. Steel frames form a permanent shield for concrete lead edges and perimeters which are subject to cracking and chipping when left unprotected. During construction these rigid frames expedite forming and provide a welded structure that assures accuracy in the concrete pour. Frames provide a uniform bearing surface for all our grating products and help eliminate the potential for rocking or irregular elevations experienced when only covers are installed on poured concrete.

All frames are available in four sided, one piece construction units and can accomodate any clear opening. Long lengths can be provided with fabricated corners for field installation when required. Frames can be provided mill finished, galvanized or with a coat of standard black paint. All our steel frames are provided with 3/8" x 4" headed concrete stud anchors welded within 6" of each corner and at a maximum of 24" on center.


Fabrication Guidelines...

Frame sections can be purchased in stock lengths for customer fabrication, or can be fabricated by Ohio Gratings for immediate installation in the field. The following guidelines apply to fabricated frames:


- 1. All corners are welded at 45 degrees and welded on the back side. Welds are not ground.
- 2. Nominal small frames (i.e., 1'-0" x 1'-0" through 5'-0" x 10'-0") are made in one piece
- Extended trench frames provided with prefabricated end sections and long lengths shipped loose for field butt joining.
- 4. Stock lengths are 20'-0".

Frames are available as one piece welded construction or individual pieces

Light Duty Grating Frame

Heavy Duty Grating Frame

Toll Free: 800-321-9800

PRODUCT SPECIFICATION GUIDE

How to Specify:

The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for Construction Specifications Canada (CSC) and the Technical Documents Committee of Construction Specifications Institute (CSI) for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

- **A**.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating).
- 2. Light Duty Steel: ASTM A1011 for hot rolled carbon steel sheet and strip. ASTM A510 for carbon steel wire rods and coarse round wire. ASTM A666 for stainless steel.
- **B**.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

- **A.** The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners
- **B.** The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

PART 2: PRODUCT...

- 1. Stair treads shall be of the same type and spacing as grating being specified. Stair treads shall be by Ohio Gratings, Inc. or approved equal.
- 2. Bearing Bar size shall be based on tread length and shall be selected in accordance with the NAAMM Metal Bar

Checkerplate Nosing (Standard on Steel Treads)

Algrip™ **Nosing** (Recommended on Steel)

Slip-Not® Nosing (Available on Steel)

Cast Aluminum
Abrasive Nosing

(Available but not recommended)

Grating Manual.

- Nosing: Checkerplate nosing (steel treads).
 (Note: An *Algrip*[™] nosing or a *Slip-Not*[®] nosing for maximum skid resistance may be specified at the discretion of the architect/engineer.)
- 4. Carrier End Plates: Attached by welding in accordance with the NAAMM Metal Bar Grating Manual. (Note: Carrier angles should be specified in conjunction with close mesh grating treads.)

PART 3: EXECUTION...

3.1 Installation

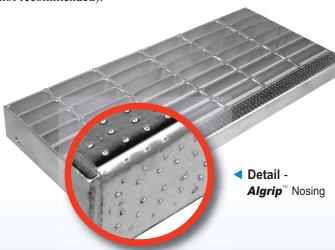
A. Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.

- **B.** Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.
- C. Cutting, Fitting and Placement.
- 1. Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.
- Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.
- 3. Cutouts for circular obstructions are to be at least 2° larger in diameter than the obstruction. Cutouts for all piping 4° or less shall be made in the field.
- 4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.
- 5. Utilize standard panel widths wherever possible.

3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

STEEL TREADS


Product Applications...

Fabricated carbon and stainless steel grating stair treads are available in three different profiles including our light duty welded steel, carbon steel dove tail and swaged carbon or stainless. Treads can be ordered with a plain (smooth) or serrated surface.

- Wilmington, NC 🛕

Nosings for steel treads include the standard checkerplate nose, *Slip-Not*® and *Algrip*™ nosing for maximum skid resistance (cast aluminum abrasive nose is available but not recommended).

▲ NC State Feed Mill - Raleigh, NC

SGSS SERIES

PRODUCT SPECIFICATION GUIDE

Plain Surface

How to Specify:

The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for

Construction Specifications Canada (CSC) and the

Technical Documents Committee of Construction Specifications Institute (CSI) for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

- A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating).

 2. Light Duty Stainless Steel: Bearing bars and cross bars shall be type 304, 304L, 316 or 316L alloy conforming to ASTM A666 for stainless steel.
- **B**.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners.

Serrated Surface

B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details

1. Grating: Swaged
Stainless Steel SGSS
Series by Ohio Gratings,
Inc., or approved equal.
2. Bearing Bars: Type
304 Stainless Steel on
13/16" centers maximum.
(Note: Other spacings may
be specified at the discretion

of the architect /engineer.)

- 3. Cross Bars: Type 304 stainless steel tubing mechanically locked by swaging at right angles to bearing bars at a maximum of 4" on center. (Note: 2" cross bar centers may be specified at the discretion of the architect/engineer.)
- 4. Surface: Plain (Note: A serrated surface may be specified at the discretion of the architect /engineer.)
- 5. Loading: Grating to carry a pedestrian loading equal to a uniform load of 100# per square foot over the required clear span with deflection not to exceed 1/4". (Note: alternate loading requirements may be specified at the discretion of the architect /engineer.)
- 6. Finish: Mill finished, suitable for industrial applications.
- 7. Fabrication and Tolerances: in accordance with the NAAMM Metal Bar Grating Manual.

PART 3: EXECUTION...

3.1 Installation

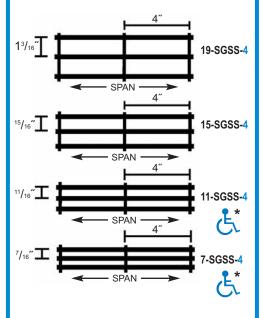
- **A.** Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.
- **B.** Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.
- C. Cutting, Fitting and Placement.
- Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.

2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and

weld a rectangular band bar of the same height and material as bearing bars.

- 3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.
- 4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.
- 5. Utilize standard panel widths wherever possible.

3.2 Grating Attachment


Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

Grating Profiles Available...

SGSS Series - Swaged Stainless Steel

All profiles shown below are also available with 2" cross bar centers. Product numbers would be

19-SGSS-2, 15-SGSS-2, 11-SGSS-2 & 7-SGSS-2

* Note: Conforms with the spacing requirements of ADA (July 1991) when installed with the elongated opening perpendicular to the dominant direction of travel.

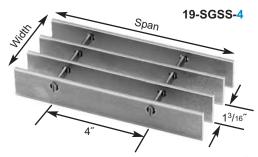
See ADA Guidelines

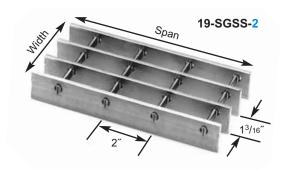
Product Applications...

- Chicago, IL

The swaging process allows the assembly of bar grating panels by mechanically locking the cross bars at right angles to the bearing bars at a maximum of 4" on center. This process provides the clean crisp lines of a recessed cross bar and eliminates the discoloration inherent with welded bar grating. As with swaged carbon, this product is manufactured free of the warping, twisting and burn marks, which are characteristic of electro forge welded stainless steel grating. Additionally, the heat generated as part of that process, limits how close together the bars may be placed. By using the most modern technology available, swaged bar grating allows for a variety of spacings including close spacings of 7/16" cc between bearing bars which have been approved by the "Americans With Disabilities Act".

Stainless steel grating has been the standard industrial footwalk product for severe corrosive environments and has been a popular grating choice for many years. OGI manufactures stainless swaged bar grating from type 304 stainless steel bar. Type 316 is also available (limited stock) along with other special alloys by special order. Special finishes are available depending on the requirements set forth by the architect. Stainless steel grating is used at chemical plants, food processing facilities, oil and gas producers, metal and mining facilities, pulp and paper plants and is also used in many other commercial and architectural applications.

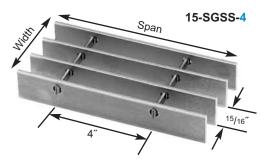

■ Star Plaza - Cleveland, OH

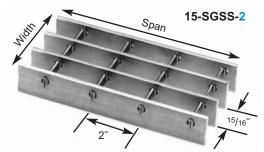


▲ General Motors Riverfront Park - Detroit, MI

19 SPACE

Load Tables


Bar Size,	Ped Span,	Wt.* Lbs.	Sec. Prop							Clear	Span						
Inches	Inches	Sq. Ft.	lx*, in⁴		2′- 0″	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5′- 0″	5′- 6″	6′- 0′	″ 6′- 6	7′- 0)" 8	3′- 0″
			0.178	U	592	379	263	193	148			U - Safe u	miform	load in t	ounds /s	ı ft	
$^{3}/_{4} \times ^{3}/_{16}$	46	5.64	0.176	D	0.114	0.179	0.257	0.349	0.457			C - Safe c					
74 X 710	40	3.04	0.067	С	592	474	395	338	296		,		g width	iicu ioau	iii pouiid	S /1t.	
			0.001	D	0.091	0.143	0.206	0.280	0.366	400	1	D - Defle	_	inches			
			0.211	U D	702 0.086	449 0.134	0.193	229 0.262	175 0.342	139 0.435	-	D Delle	ction in	menes			
1 x ¹ /8	51	4.99		С	702	561	468	401	351	312		Loads and					ıd
			0.105	D	0.069	0.107	0.154	0.210	0.274	0.347		based on	a unit st	ress of 2	0,000 psi		
				U	1053	674	468	344	263	208	168	1					_ !
4 3/			0.316	D	0.086	0.134	0.193	0.263	0.343	0.434	0.534			% O	pen Are		
1 x ³ /16	56	7.19		C	1053	842	702	601	526	468	421	1	[Bars	1/8"	3/16"	7 /
			0.158	D	0.069	0.107	0.154	0.210	0.274	0.347	0.429		[4" cc	83%	78%	י ך
			0.000	U	1096	702	487	358	274	217	175	145] [2" cc	76%	72%	7 !
1 ¹ / ₄ x ¹ / ₈	60	6.09	0.329	D	0.069	0.107	0.154	0.210	0.274	0.348	0.428	0.519] '				_
1 /4 X /8	60	6.09	0.206	С	1096	877	731	627	548	487	439	399					
			0.200	D	0.055	0.086	0.123	0.168	0.219	0.278	0.343	0.415		_			
			0.493	U	1645	1053	731	537	411	325	263	217	183				
$1^{1}/4 \times {}^{3}/16$	67	8.84	0.433	D	0.069	0.107	0.154	0.210	0.274	0.347	0.428	0.517	0.618	_			
1 7 7 7 7 10	0,	0.01	0.308	С	1645	1316	1096	940	822	731	658	598	548				
			0.000	D	0.055	0.086	0.123	0.168	0.219	0.278	0.343	0.415	0.494				
			0.474 U		1579 0.057	1011 0.089	702	516 0.175	395 0.229	312 0.289	253 0.358	209 0.433	175 0.513				
1 ¹ /2 x ¹ /8	69	7.19		С	1579	1263	1053	902	789	702	632	574	526				
			0.355	D	0.046	0.071	0.103	0.140	0.183	0.232	0.286	0.346	0.411				
				U	2368	1516	1053	773	592	468	379	313	263		1		
1 ¹ /2 x ³ /16			0.711	D	0.057	0.089	0.129	0.175	0.229	0.289	0.357	0.432	0.514				
1 1/2 X 1/16	77	10.48	0.500	C	2368	1895	1579	1353	1184	1053	947	861	789				
			0.533	D	0.046	0.071	0.103	0.140	0.183	0.232	0.286	0.346	0.411	0.48	3		
			0.967	U	3224	2063	1433	1053	806	637	516	426	358	30			201
$1^{3}/4 \times {}^{3}/16$	86	11.71	0.967	D	0.049	0.077	0.110	0.150	0.196	0.248	0.306	0.370	0.441	0.51			0.782
1 /4 / / 10	00	11.71	0.846	С	3224	2579	2149	1842	1612	1433	1289	1172	1075		_		806
			0.040	D	0.039	0.061	0.088	0.120	0.157	0.198	0.245	0.296	0.353			_	0.627
			1.263	U	4210	2695	1871	1375	1053	832	674	557	468				263
$2 \times \frac{3}{16}$	95	13.78		D	0.043	0.067	0.096	0.131	0.171	0.217	0.268	0.324	0.386				0.685
			1.263	C D	4210	3368	2807	2406	2105	1871	1684	1531	1403				1053
				U	0.034 5329	0.054 3410	0.077 2368	0.105 1740	0.137 1332	0.174 1053	0.214 853	0.259 705	0.308 592				0.549
-1, 2,			1.599	D	0.038	0.060	0.086	0.117	0.152	0.193	0.238	0.288	0.343				333 0.609
$2^{1}/4 \times {}^{3}/16$	104	15.49			5329	4263	3553	3045	2664	2368	2132	1938	1776				1332
			1.798 C	0.030	0.048	0.069	0.093	0.122	0.154	0.191	0.231	0.274				0.488	
				U	6579	4210	2924	2148	1645	1300	1053	870	731				411
$2^{1}/2 \times {}^{3}/16$	440	47.00	1.974	D	0.034	0.054	0.077	0.105	0.137	0.174	0.214	0.259	0.309				0.548
Z 72 X 7/16	112	17.08	0.407	C	6579	5263	4386	3759	3289	2924	2632	2392	2193				1645
			2.467	/4h/	0.027	0.043	0.062	0.084	0.110	0.139	0.171	0.207	0.247				0.439


19-SGSS-4 / 19-SGSS-2 Panel Width Chart (in.) Dimensions Are Out-to-Out of Bearing Bars**

							,								
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
³ /16" Bars	1 ³ /8	2 ⁹ /16	33/4	4 ¹⁵ /16	6 ¹ /8	7 ⁵ /16	8 ¹ / ₂	9 ¹¹ /16	10 ⁷ /8	12 ¹ /16	13 ¹ / ₄	14 ⁷ /16	15 ⁵ /8	16 ¹³ /16	18
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
³ /16" Bars	19 ³ /16	203/8	21 ⁹ /16	223/4	23 ¹⁵ /16	25 ¹ /8	26 ⁵ /16	27 ¹ / ₂	28 ¹¹ /16	29 ⁷ /8	31 ¹ /16	32 ¹ /4	33 ⁷ /16	34 ⁵ /8	35 ¹³ /16

^{**}Add 1/4" for extended cross bars. Deduct 1/16" for 1/8" bearing bars. Standard panel widths indicated in blue.

15 SPACE

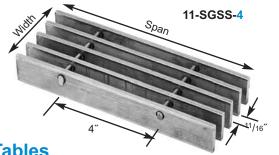
Load Tables

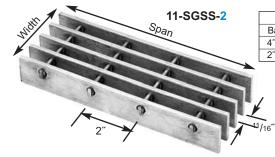
7	% (% Open Area*				
	Bars	1/8"	3/16"			
0 1	4" cc	%	74%			
A	2" cc	%	68%			

Bar	Ped	Wt.*	Sec. Prop							Clear	Span					
Size, Inches	Span, Inches	Lbs. Sq. Ft.	Sx*, in³ lx*, in⁴		2′- 0″	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5′- 0″	5′- 6″	6′- 0″	6′- 6″	7′- 0″	8′- 0′
			0.005	U	750	480	333	245	188	148	U - Safe	uniform lo	ad in pound	ls /sa.ft.		
$^{3}/_{4} \times ^{3}/_{16}$	40	0.00	0.225	D	0.114	0.179	0.257	0.350	0.458	0.578	1		ed load in po			
9/4 X 9/16	48	6.99	0.004	С	750	600	500	429	375	333		g width	•			
			0.084	D	0.091	0.143	0.206	0.280	0.366	0.462	D - Defle	ection in in	ches			
			0.400	U	1333	853	593	435	333	263	213	176				
1 x ³ /16	60	8.95	0.400	D	0.086	0.134	0.193	0.262	0.343	0.433	0.535	0.647	Loads ar	nd deflection	ons are theo	retical
I A / 10		0.55	0.200	C	1333	1067	889	762	667	593	533	485			stress of 2	
			0.200	D	0.069	0.107	0.154	0.210	0.274	0.347	0.428	0.519		_		
			0.625	U	2083	1333	926	680	521	412	333	275	231			
$1^{1}/4 \times {}^{3}/16$	71	11.03	0.023	D	0.069	0.107	0.154	0.210	0.274	0.348	0.428	0.518	0.616			
1 /4 A / 10	′ '	11.00	0.391	С	2083	1667	1389	1190	1042	926	833	758	694			
			0.591	D	0.055	0.086	0.123	0.168	0.219	0.278	0.343	0.415	0.493		_	_
			0.900	J	3000	1920	1333	980	750	593	480	397	333	284	245	
$1^{1}/_{2} \times ^{3}/_{16}$	81	13.12	0.900	D	0.057	0.089	0.129	0.175	0.229	0.289	0.357	0.432	0.514	0.604	0.700	
1 /2 A / 10	01	10.12	1 06/5	С	3000	2400	2000	1714	1500	1333	1200	1091	1000	923	857	
			0.073	D	0.046	0.071	0.103	0.140	0.183	0.231	0.286	0.346	0.411	0.483	0.560	
			1.225	U	4083	2613	1815	1333	1021	807	653	540	454	387	333	255
$1^{3}/4 \times {}^{3}/16$	91	14.67	1.220	D	0.049	0.077	0.110	0.150	0.196	0.248	0.306	0.370	0.441	0.518	0.599	0.783
1 /4 X /10		14.07	1.072	С	4083	3267	2722	2333	2042	1815	1633	1485	1361	1256	1167	1021
			1.072	D	0.039	0.061	0.088	0.120	0.157	0.198	0.245	0.296	0.353	0.414	0.480	0.627
			1.600	U	5333	3413	2370	1741	1333	1053	853	705	593	505	435	333
$2 \times \frac{3}{16}$	101	17.29	1.000	D	0.043	0.067	0.096	0.131	0.171	0.217	0.268	0.324	0.386	0.453	0.525	0.685
Z X /10	101	17.20	1.600	С	5333	4267	3556	3048	2667	2370	2133	1939	1778	1641	1524	1333
			1.000	D	0.034	0.054	0.077	0.105	0.137	0.174	0.214	0.259	0.309	0.362	0.420	0.548
			2.025	U	6750	4320	3000	2204	1688	1333	1080	893	750	639	551	422
$2^{1}/4 \times {}^{3}/16$	110	19.47		D	0.038	0.060	0.086	0.117	0.152	0.193	0.238	0.288	0.343	0.402	0.467	0.610
∠ /4 ∧ / 10	'''	2 278	С	6750	5400	4500	3857	3375	3000	2700	2455	2250	2077	1929	1688	
			2.270	D	0.030	0.048	0.069	0.093	0.122	0.154	0.190	0.231	0.274	0.322	0.373	0.488
			2.500	U	8333	5333	3704	2721	2083	1646	1333	1102	926	789	680	521
$2^{1}/2 \times {}^{3}/16$	119	21 48	2.000	D	0.034	0.054	0.077	0.105	0.137	0.174	0.214	0.259	0.309	0.362	0.420	0.549
Z 12 X 116	113	21 48	С	8333	6667	5556	4762	4167	3704	3333	3030	2778	2564	2381	2083	
			0.120	D	0.027	0.043	0.062	0.084	0.110	0.139	0.171	0.207	0.247	0.290	0.336	0.439

15-SGSS-4 / 15-SGSS-2 Panel Width Chart (in.) Dimensions Are Out-to-Out of Bearing Bars**

10 0000 17	10 0000 17 to 0000 21 diff Width Chart (iii.) Dimonolone 710 Cat to Cat of Boaring Date														
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
³ /16" Bars	1 ¹ /8	2 ¹ /16	3	3 ¹⁵ /16	4 ⁷ /8	5 ¹³ /16	63/4	7 ¹¹ /16	8 ⁵ /8	9 ⁹ /16	10 ¹ / ₂	11 ⁷ /16	12 ³ /8	13 ⁵ /16	14 ¹ / ₄
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
³ /16" Bars	15 ³ /16	16 ¹ /8	17 ¹ /16	18	18 ¹⁵ /16	19 ⁷ /8	2013/16	21 ³ / ₄	2211/16	23 ⁵ /8	24 ⁹ /16	25 ¹ / ₂	26 ⁷ /16	27 ³ /8	28 ⁵ /16
No. of Bars	32	33	34	35	36	37	38	39							
³ /16" Bars	29 ¹ / ₄	30 ³ /16	31 ¹ /8	32 ¹ /16	33	33 ¹⁵ /16	34 ⁷ /8	35 ¹³ /16							


^{**}Add 1/4" for extended cross bars. Deduct 1/16" for 1/8" bearing bars. Standard panel widths indicated in blue.


*Based on 12.8 bars/ft. of grating width. Bearing bars 19/16, C.c. Add. 6 lbs./sq. ft. for 15-SGSS-2. 1/8" bearing bars available by inquiry.

Note: Grating for spans to the left of the heavy line have a deflection less than 1/4" for uniform loads of 100 lbs./sq. ft. This is the maximum deflection to afford pedestrian comfort and can be exceeded for other types of load at the discretion of the engineer. The actual Ped (pedestrian) Span under this condition is shown above for each size of grating. When serrated grating is specified, the depth of grating required for a specific load will be 1/4" greater than that shown in these tables. 4/4 s 1/4" serrated grating is not available.

67

11 SPACE

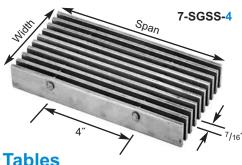
% Open Area*												
Bars	1/8″	³ /16″										
4" cc	%	67%										
2" cc	%	62%										

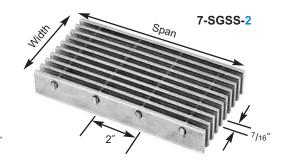
	 \sim	es
Load	 71	

Bar	Ped	Wt.*	Sec. Prop							Clear	Span					
Size, Inches	Span, Inches	Lbs. Sq. Ft.	Sx*, in³ lx*, in⁴		2′- 0″	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5′- 0″	5′- 6″	6′- 0″	6′- 6″	7′- 0″	8′- 0″
			0.007	U	1023	655	455	334	256	202		II - Sat	fe uniforn	n load in	nounds/ s	sa ft
3, 3,			0.307	D	0.114	0.179	0.257	0.350	0.458	0.578			fe concent			
³ /4 x ³ /16	52	9.32	0.445	С	1023	818	682	584	511	455			ting width		a iii pouiii	10/ 101
			0.115	D	0.091	0.143	0.206	0.280	0.365	0.463		D - De	flection is	n inches		
			0.545	U	1818	1164	808	594	455	359	291	240	Loads	and defl	ections ar	·e
4 3/			0.545	D	0.086	0.134	0.193	0.263	0.343	0.434	0.536	0.647			are based	
1 x ³ /16	65	11.99	0.070	С	1818	1455	1212	1039	909	808	727	661	a unit	stress of	20,000 ps	si.
			0.273	D	0.069	0.107	0.154	0.210	0.274	0.347	0.428	0.518		_		
			0.852	U	2841	1818	1263	928	710	561	455	376	316	269		
41/ 3/			0.852	D	0.069	0.107	0.154	0.210	0.274	0.347	0.429	0.519	0.618	0.724		
$1^{1}/4 \times {}^{3}/16$	77	14.83	0.522	С	2841	2273	1894	1623	1420	1263	1136	1033	947	874		
			0.533	D	0.055	0.086	0.123	0.168	0.219	0.278	0.343	0.415	0.494	0.579		_
			4 007	U	4091	2618	1818	1336	1023	808	655	541	455	387	334	256
41/ 3/		1-00	7.60	D	0.057	0.089	0.129	0.175	0.229	0.289	0.357	0.432	0.515	0.603	0.700	0.915
$1^{1}/2 \times {}^{3}/16$	88	17.68	0.000	С	4091	3273	2727	2338	2046	1818	1636	1488	1364	1259	1169	1023
		0.920	D	0.046	0.071	0.103	0.140	0.183	0.231	0.286	0.346	0.412	0.483	0.560	0.732	
			4.070	U	5568	3564	2475	1818	1392	1100	891	736	619	527	455	348
431 31			1.670	D	0.049	0.077	0.110	0.150	0.196	0.248	0.306	0.370	0.441	0.517	0.601	0.784
1 ³ /4 x ³ /16	99	19.79	4.400	С	5568	4455	3712	3182	2784	2475	2227	2025	1856	1713	1591	1392
l .			1.462	D	0.039	0.061	0.088	0.120	0.157	0.198	0.245	0.296	0.353	0.414	0.480	0.627
			0.400	U	7273	4655	3232	2375	1818	1437	1164	962	808	689	594	455
0 3/			2.182	D	0.043	0.067	0.096	0.131	0.171	0.217	0.268	0.324	0.386	0.453	0.525	0.686
2 x ³ /16	109	23.37	0.400	С	7273	5818	4849	4156	3636	3232	2909	2645	2424	2238	2078	1818
			2.182	D	0.034	0.054	0.077	0.105	0.137	0.174	0.214	0.259	0.309	0.362	0.420	0.549
			0.764	U	9205	5891	4091	3006	2301	1818	1473	1217	1023	871	751	575
01/ 3/			2.761	D	0.038	0.060	0.086	0.117	0.152	0.193	0.238	0.288	0.343	0.402	0.466	0.609
$2^{1}/4 \times {}^{3}/16$	119	19 26.34	2 407	С	9205	7364	6137	5260	4602	4091	3682	3347	3068	2832	2630	2301
			3.107	D	0.030	0.048	0.069	0.093	0.122	0.154	0.190	0.230	0.274	0.322	0.373	0.488
			2.400	U	11364	7273	5051	3711	2841	2245	1818	1503	1263	1076	928	710
01/2 3/			3.409	D	0.034	0.054	0.077	0.105	0.137	0.174	0.214	0.259	0.309	0.362	0.420	0.548
$2^{1}/2 \times {}^{3}/16$	129	29.08	4.004	С	11364	9091	7576	6494	5682	5051	4546	4132	3788	3497	3247	2841
			4 261	D	0.027	0.043	0.062	0.084	0.110	0.139	0.171	0.207	0.247	0.290	0.336	0.439

*Based on 17.455 bars/ft. of grating width. Bearing bars "\" c.c. Add .6 lbs./sq. ft. for 11-SGSS-2. '\" bearing bars available by inquiry.

Note: Grating for spans to the left of the heavy line have a deflection less than '\" for uniform loads of 100 lbs./sq. ft. This is the maximum deflection to afford pedestrian comfort and can be exceeded for other types of load at the discretion of the engineer. The actual Ped (pedestrian) Span under this condition is shown above for each size of grating. When serrated grating is specified, the depth of grating required for a specific load will be '\" greater than that shown in these tables. \" x \" w" serrated grating is not available.


11-SGSS-4 / 11-SGSS-2 Panel Width Chart (in.) Dimensions Are Out-to-Out of Bearing Bars**


						,	,								
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
³ /16" Bars	7/8	1 ⁹ /16	2 ¹ / ₄	2 ¹⁵ /16	3 ⁵ /8	4 ⁵ /16	5	5 ¹¹ /16	6 ³ /8	7 ¹ /16	73/4	8 ⁷ /16	9 ¹ /8	9 ¹³ /16	10 ¹ / ₂
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
3/16" Bars	11 ³ /16	11 ⁷ /8	12 ⁹ /16	13 ¹ / ₄	13 ¹⁵ /16	14 ⁵ /8	15 ⁵ /16	16	16 ¹¹ /16	17 ³ /8	18 ¹ /16	18 ³ / ₄	19 ⁷ /16	20 ¹ /8	20 ¹³ /16
No. of Bars	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
³ /16" Bars	21 ¹ / ₂	22 ³ /16	22 ⁷ /8	23 ⁹ /16	24 ¹ / ₄	24 ¹⁵ /16	25 ⁵ /8	26 ⁵ /16	27	27 ¹¹ /16	28 ³ /8	29 ¹ / ₁₆	29 ³ / ₄	30 ⁷ /16	31 ¹ /8
No. of Bars	47	48	49	50	51	52	53								
3/16" Bars	31 ¹³ / ₁₆	32 ¹ / ₂	33 ³ /16	33 ⁷ /8	34 ⁹ /16	35 ¹ / ₄	35 ¹⁵ /16								

^{**}Add $^{1/4}$ " for extended cross bars. Deduct $^{1/16}$ " for $^{1/8}$ " bearing bars. Standard panel widths indicated in blue.

7 SPACE

% Open Area*												
Bars	1/8″	³ /16″										
4" cc	%	52%										
2" cc	%	48%										

Load Tables

Bar	Ped Span, Inches	Wt.* Lbs. Sq. Ft.	Sec. Prop							Clear	rSpan							
Size, Inches			Sx*, in³		2'- 0"	2′- 6″	3′- 0″	3′- 6″	4′- 0″	4′- 6″	5'- 0"	5′- 6″	6′- 0″	6′- 6″	7′- 0″	8′- 0″		
³ /4 x ³ /16			0.400	U	1607	1029	714	525	402	317	257	U - Safe	afe uniform load in pounds/sq. ft.					
	58	14.30	0.482	D	0.114	0.179	0.257	0.350	0.457	0.578	0.714	C - Safe concentrated load in pounds/ft.grating width D - Deflection in inches						
			0.181	С	1607	1286	1071	918	804	714	643		ection in inc		retical and b	ased on a		
				D	0.091	0.143	0.206	0.280	0.366	0.463	0.572	unit stre	ess of 20,00	0 psi.	,			
1 x ³ /16	73	18.50	0.857	U	2857	1829	1270	933	714	564	457	378	317	271				
				D	0.086	0.134	0.193	0.263	0.343	0.434	0.536	0.649	0.770	0.907				
			0.429	С	2857	2286	1905	1633	1429	1270	1143	1039	952	879				
				D	0.069	0.107	0.154	0.210	0.274	0.347	0.429	0.519	0.617	0.724				
1 ¹ /4 x ³ /16	86	22.97	1.339	U	4464	2857	1984	1458	1116	882	714	590	496	423	364	279		
			1.555	D	0.069	0.107	0.154	0.210	0.274	0.347	0.428	0.518	0.617	0.725	0.839	1.097		
			0.837	С	4464	3571	2976	2551	2232	1984	1786	1623	1488	1374	1276	1116		
				D	0.055	0.086	0.123	0.168	0.219	0.278	0.343	0.415	0.494	0.580	0.672	0.878		
1 ¹ / ₂ x ³ / ₁₆	98	27.44	1.929	U	6429	4114	2857	2099	1607	1270	1029	850	714	609	525	402		
			1.323	D	0.057	0.089	0.129	0.175	0.229	0.289	0.357	0.432	0.514	0.604	0.700	0.915		
			1.446	С	6429	5143	4286	3674	3214	2857	2571	2338	2143	1978	1837	1607		
			1.440	D	0.046	0.071	0.103	0.140	0.183	0.231	0.286	0.346	0.411	0.483	0.560	0.731		
1 ³ /4 x ³ /16	110	30.76	2.625	U	8750	5600	3889	2857	2188	1728	1400	1157	972	828	714	547		
			2.025	D	0.049	0.077	0.110	0.150	0.196	0.248	0.306	0.370	0.441	0.517	0.600	0.784		
			2.297	С	8750	7000	5833	5000	4375	3889	3500	3182	2917	2692	2500	2188		
				D	0.039	0.061	0.088	0.120	0.157	0.198	0.245	0.296	0.353	0.414	0.480	0.627		
2 x ³ /16	122	36.38	3.429	U	11429	7314	5079	3732	2857	2258	1829	1511	1270	1082	933	714		
				D	0.043	0.067	0.096	0.131	0.171	0.217	0.268	0.324	0.386	0.453	0.525	0.685		
	122		3.429	С	11429	9143	7619	6531	5714	5079	4572	4156	3810	3517	3265	2857		
				D	0.034	0.054	0.077	0.105	0.137	0.174	0.214	0.259	0.309	0.362	0.420	0.549		
2 ¹ /4 x ³ /16	133	41.05	4.339	U	14465	9257	6429	4723	3616	2857	2314	1913	1607	1369	1181	904		
			4.339	D	0.038	0.060	0.086	0.117	0.152	0.193	0.238	0.288	0.343	0.402	0.467	0.610		
			4 000	С	14465	11572	9643	8265	7232	6429	5786	5260	4822	4451	4133	3616		
			4.882	D	0.030	0.048	0.069	0.093	0.122	0.154	0.190	0.230	0.274	0.322	0.373	0.488		
2 ¹ /2 x ³ /16	144	45.35	E 257	U	17857	11429	7937	5831	4464	3527	2857	2361	1984	1691	1458	1116		
			5.357	D	0.034	0.054	0.077	0.105	0.137	0.174	0.214	0.259	0.309	0.362	0.420	0.549		
			6.607	С	17857	14286	11905	10204	8929	7937	7143	6494	5952	5495	5102	4464		
			6.697	D	0.027	0.043	0.062	0.084	0.110	0.139	0.171	0.207	0.247	0.290	0.336	0.439		

7-SGSS-4 / 7-SGSS-2 Panel Width Chart (in.) Dimensions Are Out-to-Out of Bearing Bars**

						- ()									
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
3/16" Bars	5/8	1 ¹ /16	1 ¹ /2	1 ¹⁵ /16	2 ³ /8	2 ¹³ /16	31/4	3 ¹¹ /16	4 ¹ /8	4 ⁹ /16	5	5 ⁷ /16	5 ⁷ /8	6 ⁵ /16	6 ³ /4
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
3/16" Bars	7 ³ /16	7 ⁵ /8	8 ¹ /16	8 ¹ / ₂	8 ¹⁵ /16	93/8	9 ¹³ /16	10 ¹ / ₄	1011/16	11 ¹ /8	11 ⁹ /16	12	12 ⁷ /16	12 ⁷ /8	13 ⁵ /16
No. of Bars	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
3/16" Bars	13 ³ / ₄	14 ³ /16	14 ⁵ /8	15 ¹ /16	15 ¹ /2	15 ¹⁵ /16	16 ³ /8	16 ¹³ /16	17 ¹ /4	17 ¹¹ /16	18 ¹ /8	18 ⁹ /16	19	19 ⁷ /16	19 ⁷ /8
No. of Bars	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
3/16" Bars	20 ⁵ /16	203/4	21 ³ /16	21 ⁵ /8	22 ¹ /16	22 ¹ / ₂	22 ¹⁵ /16	23 ³ /8	23 ¹³ /16	24 ¹ / ₄	24 11/16	25 ¹ /8	25 ⁹ /16	26	26 ⁷ /16
No. of Bars	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
3/16" Bars	26 ⁷ /8	27 ⁵ /16	273/4	28 ³ /16	28 ⁵ /8	29 ¹ / ₁₆	29 ¹ / ₂	29 ¹⁵ /16	30 ³ /8	3013/16	31 ¹ / ₄	31 ¹¹ /16	32 ¹ /8	32 ⁹ /16	33
No. of Bars	77	78	79	80	81	82	83								
³ /16" Bars	33 ⁷ /16	33 ⁷ /8	34 ⁵ /16	34 ³ / ₄	35 ³ /16	35 ⁵ /8	36 ¹ /16								

^{**}Add $^{1/4}$ " for extended cross bars. Deduct $^{1/16}$ " for $^{1/8}$ " bearing bars. Standard panel widths indicated in blue.

*Based on 27.429 bars/ft. of grating width. Bearing bars //s. c.c. Add. 6 lbs./sq. ft. for 7-SGSS-2. //s. bearing bars available by inquiry.
Note: Cristing for spans to the left of the beavy line have a deflection less than //s for uniform loads of 100 lbs./sq. ft. This is the maximum deflection to afford peaks a deflection less than //s for uniform loads of 100 lbs./sq. ft. This is the maximum deflection to afford peaks and the discretion of the engineer. The actual Ped (pedestrian) Span under this condition is shown above for each size of grating.
When serrated grating is specified, the depth of grating required for a specific load will be 1/s greater than that shown in these tables. 3/s serrated grating is not available.

69

HEAVY DUTY STEEL GRATING

Ohio Gratings has been manufacturing heavy duty carbon steel grating since 1971...

This type of grating is used in areas where heavy static or rolling loads are encountered including heavy vehicular truck traffic up to H-20 loading. Calculations for vehicular loadings are based on AASHTO Standard Specifications for Highway Bridges and can be calculated by our Engineering department for your specific applications. Welded carbon steel is the most popular choice where high strength is required and is available using #304 or #316 stainless steel. For those applications

requiring an ADA type product, our *Wheels n' Heels*® product offers the strength of the standard welded grating along with a spacing which allows 1/4" opening between bearing bars which conforms to the provisions with the "Americans With Disabilities Act" for pedestrian and wheelchair accessibility. To round out our heavy duty line, Ohio Gratings offers our heavy duty riveted product which is the oldest grating product on the market and continues to be popular with the engineering community.

Heavy Duty Welded Steel Grating

Welded carbon heavy duty steel grating is the most popular choice where high strength is the primary grating requirement. The main bars are slotted and assembled with cross bars which are welded with the one fillet weld at every joint. Stainless steel can also be provided for those high corrosive applications. This product meets the demanding vehicle loading requirements of AASHTO and is geared to handle heavy rolling loads. Slip resistant surfaces are available. The typical markets for heavy duty steel grating include airfields, highway bridges, ramps, docks, industrial flooring and trenches.

Wheels n' Heels® Heavy Duty Steel Grating

Wheels n' Heels® is the first grating product which satisfies both the vehicle loading requirements of AASHTO and the pedestrian comfort requirements of the Americans With Disabilities Act. Made from 3/8" or 1/4" thick ASTM A36 steel bar, this product will clear span up to 8' under H15 and H20 wheel loads and can be provided in piece sizes up to 3' wide by 20' long. In addition, the close spacing of the bearing bars offers a pedestrian friendly 1/4" or 1/2" opening which allows easy access to wheelchair and high heel traffic. Slip resistant surfaces are also available.

Heavy Duty Riveted Steel Grating

The most traditional of the grating products, is our heavy duty riveted grating. It continues to be the choice of many engineers due to its reliability and durability. Bearing bars are connected with a reticuline bar to form a truss-like grid which is best suited to handle the high impact and lateral forces encountered in bridge deck applications. Riveted grating is widely used in areas which experience the dynamics of partially distributed wheel loadings. Because of its light weight and simple installation as compared to other surfaces, metal riveted bar grating permits resurfacing to handle heavier loads without the need for expensive sub-structure work. This material can be stocked in inventory by municipalities for quick installation. Slip resistant surfaces are available.

HEAVY DUTY STEEL

Design Criteria...

The following pages show capacities on the basis of vehicular load distribution and concentrated loading per foot of grating width for a given span. Calculations for concentrated load are similar in format to those for Light Duty Steel grating shown on page 43, except F = 20,000psi. Calculations for vehicular loadings are based on AASHTO Standard Specifications for Highway Bridges and utilize the following formulas:

M = Bending Moment

S = Section Modulus - in³/ft. of grating width

I = Moment of Inertia - in⁴/bar

E = Modulus of Elasticity (29,000,000 psi)

F = Allowable Bending Stress (20,000 psi)

L = Clear, Simple Span - inches

D = Deflection - inches

a = Partial Load Contact Parallel to Span - inches

s = Center-to-Center Spacing Between Bearing Bars - in.

b = Partial Load Contact Dimension at 90° to Span - in.

b = a + (2s)

P = Total Wheel or Partial Load Including Impact - lbs.

 P^1 = P per bearing bar

 $P^{1} = P \times (s/b)$

Step 1. Determine M:

Step 3.Check D*:

Step 2. Substituting for M,

(i) a > l

M = FS/12

(ii) a < |

solve for 1:

 $M = P I^2$ M = P(.25 I - .125a)

 $D = P^1[(2 \mid ^3) - (a^2 \mid) + (a^3/4)]$

^{*} Deflection should be limited to 1/400 span.

Maximum Traffic Conditions	Wheel Load (lbs.)	Looding	Load Distribution**		
Maximum Tranic Conditions	(¹/₂ of Axle Load + 30% Impact)	Loading	а	b	
Truck Traffic 32,000 Lb. Axle Load Dual Wheels	20,800	H-20	20″	20" + (2s)	
Truck Traffic 24,000 Lb. Axle Load Dual Wheels	15,600	H-15	15″	15" + (2s)	
10,000 Lb. Capacity Lift Truck 14,400 Lb. Vehicle 24,400 Lb. Total Load 85% Drive Axle Load	13,480	5 Ton	11″	11" + (2s)	
6,000 Lb. Capacity Lift Truck 9,800 Lb. Vehicle 15,800 Lb. Total Load 85% Drive Axle Load	8,730	3 Ton	7″	7" + (2s)	
2,000 Lb. Capacity Lift Truck 4,200 Lb. Vehicle 6,200 Lb. Total Load 85% Drive Axle Load	3,425	1 Ton	4"	4" + (2s)	

NOTES: (1) For continuous spans, use continuity factor = .80.

- ** (2) This distribution results in larger grating sizes for lighter trucks on shorter spans. Spans shown for H15/H20 reflect the more critical condition.
- (3) The fork lift wheel loads and load distribution patterns depicted above, generally, and only partially, represent the broad range of rubber-tired lift trucks available. For those applications falling outside of these examples, please contact the factory.
- (4) Wheeled vehicles with urethane tires should NEVER be used in conjunction with open grid bar grating.
- (5) HS20 is the same as H20 and HS15 is the same as H15. The "S" stands for semi-trailer.

Information of a technical nature contained herein is intended only for evaluation by technically skilled persons, with any use thereof to be at their independent discretion and risk. Such information is reliable when evaluated in the proper manner under conditions as described herein. Ohio Gratings, Inc. shall have no responsibility or liability for results obtained or damages resulting from improper evaluation or use

HEAVY DUTY WELDED STEEL

PRODUCT SPECIFICATION GUIDE

Plain Surface

How to Specify:

The information below provides a specification format for architecturaland engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for **Construction Specifications** Canada (CSC) and the Technical Documents Committee of Construction

Specifications Institute (CSI) for specifications serving the con-struction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating). 2. Heavy Duty Steel: ASTM A36 for hot rolled structural steel bars. ASTM A510 for carbon steel wire rods and coarse round wire.

B.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners.

B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

nated with the load and span conditions.) 3. Cross Bars: To be (size) spaced 4" centerto-center and welded at right angles to bearing bars with one fillet at each bearing bar/cross bar intersection. (Note: 2" cross bar spacing may be specified for maximum lateral stability.) 4. Surface: Plain. (Note: a serrated surface may be specified for maximum skid resist-

5. Loading: (Shall be specified by the architect /engi-neer in terms of uniform load/sq. ft., concentrated load/ft.of grating width, or by AASH-TO wheel load designation. Loading, bearing bar size, bearing bar spacing and span conditions must be coordinated.)

6. Finish: (Galvanized or manufacturer's standard black paint at the discretion of the architect /engineer.)

7. Fabrication and Tolerances: in accordance with the NAAMM Metal Bar Grating Manual.

PART 3: EXECUTION...

3.1 Installation

A. Prior to grating installation, contractor shall inspect supports for correct size. layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.

B. Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.

C. Cutting, Fitting and Placement.

1. Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.

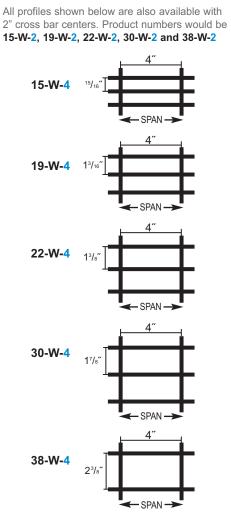
2. Wherever grating is pierced by pipes, ducts and structural members. cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.

3. Cutouts for circular obstructions are

to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.

4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.

5. Utilize standard panel widths wherever possible.


3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

Grating Profiles Available...

W Series - Heavy Duty Welded Steel

All profiles shown below are also available with

HEAVY DUTY WELDED STEEL

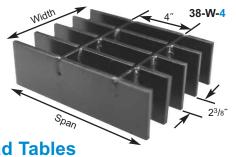
Product Applications...

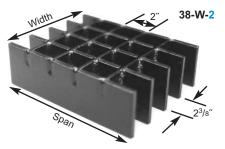
Welded carbon heavy duty steel grating is the most popular choice where high strength is the primary grating requirement. The main bars are slotted and assembled with cross bars which are welded with one fillet weld at every joint. Stainless steel can also be provided for those high corrosive applications. This product meets the demanding vehicle

loading requirements of AASHTO and is geared to handle heavy rolling loads. Slip resistant surfaces are available. The typical applications for our heavy duty steel products include airfield landing mats and trenches, airplane unloading ramps, highway bridge decking, sidewalks, concrete reinforcements, vault covers, ramps, docks, industrial flooring, trenches, offshore drilling rigs and paper mills.

Bayloff ► Machine & Die - Van Buren, MI

■ Detail Bayloff




▲ Benson Park
- Washington, DC

HEAVY DUTY WELDED STEEL

38 SPACE

	% Open Area*												
BB	СВ	Be	aring Ba	r Thickne	ess								
Size	Ctrs	1/4" 5/16" 3/8" 1/2"											
Thru	4" cc	82%	80%	77%	_								
2 ¹ /2"	2" cc	76%	73%	71%	_								
3" to	4" cc	84%	82%	79%	74%								
6″	2" cc	80%	78%	75%	71%								

Load	Ian	
LUau	ıav	ICO

Bar Size,	Wt.** Lbs.	Section P Sx**, in³	roperties lx**, in⁴	Cross Bar Size,	Ма	ximum Safe Cl Partially Dist	lear Span, Incl tributed Load	nes-
Inches	Sq. Ft.	Ft. Width	Ft. Width	Inches	1 Ton	3 Ton	5 Ton	H15/H20
1 x ¹ / ₄	5.42	0.211	0.105	³ / ₈ Dia	5	5	6	7
1 x ³ /8	7.57	0.316	0.158	³ / ₈ Dia	7	6	7	8
1 ¹ / ₄ x ¹ / ₄	6.50	0.329	0.206	³ / ₈ Dia	7	6	7	9
1 ¹ / ₄ x ³ / ₈	9.18	0.493	0.308	³ / ₈ Dia	10	7	9	11
1 ¹ / ₂ x ¹ / ₄	7.57	0.474	0.355	³ / ₈ Dia	10	7	9	10
1 ¹ / ₂ x ⁵ / ₁₆	9.18	0.592	0.444	³ / ₈ Dia	12	8	10	12
1 ¹ / ₂ x ³ / ₈	10.79	0.711	0.533	³ / ₈ Dia	14	9	11	13
1 ³ / ₄ x ¹ / ₄	8.64	0.645	0.564	³ / ₈ Dia	12	9	10	12
1 ³ / ₄ x ³ / ₈	12.40	0.967	0.846	³ / ₈ Dia	18	12	13	15
2 x ¹ / ₄	9.72	0.842	0.842	³ / ₈ Dia	16	11	12	14
2 x ⁵ /16	11.86	1.053	1.053	³ / ₈ Dia	19	12	13	16
2 x ³ /8	14.01	1.263	1.263	³ / ₈ Dia	23	14	15	18
2 ¹ / ₄ x ¹ / ₄	10.79	1.066	1.199	³ / ₈ Dia	20	13	13	16
$2^{1}/_{4} \times ^{3}/_{8}$	15.62	1.599	1.799	³ / ₈ Dia	29	17	17	20
$2^{1/2} \times {}^{1/4}$	11.86	1.316	1.645	³ / ₈ Dia	24	15	15	18
2 ¹ / ₂ x ⁵ / ₁₆	14.55	1.645	2.056	³ / ₈ Dia	30	18	18	21
$2^{1}/_{2} \times ^{3}/_{8}$	17.23	1.974	2.467	³ / ₈ Dia	35	21	20	24
3 x ¹ / ₄	15.44	1.895	2.842	1 x ¹ / ₄	34	20	20	23
3 x ⁵ /16	18.66	2.369	3.553	1 x ¹ / ₄	42	24	23	27
3 x ³ /8	21.88	2.842	4.263	1 x ¹ / ₄	50	29	27	31
3 x ¹ / ₂	28.32	3.790	5.685	1 x ¹ / ₄	64*	37	35	39
$3^{1}/_{2} \times ^{1}/_{4}$	17.58	2.579	4.513	1 x ¹ /4	45	26	25	29
$3^{1}/_{2} \times {}^{3}/_{8}$	25.10	3.869	6.770	1 x ¹ / ₄	67	38	35	40
$3^{1}/_{2} \times {}^{1}/_{2}$	32.62	5.158	9.027	1 x ¹ / ₄	81*	49	45	50
4 x ¹ / ₄	19.73	3.369	6.737	1 x ¹ / ₄	59	33	31	35
4 x ⁵ /16	24.03	4.211	8.422	1 x ¹ / ₄	73	41	38	43
4 x ³ /8	28.32	5.053	10.106	1 x ¹ /4	86*	48	44	50
$4 \times ^{1}/_{2}$	36.91	6.737	13.475	1 x ¹ / ₄	96	63	57	63
$4^{1}/_{2} \times ^{1}/_{4}$	21.88	4.263	9.593	1 x ¹ / ₄	74	41	38	43
$4^{1}/2 \times {}^{3}/8$	31.54	6.395	14.389	1 x ¹ / ₄	96	60	55	60
$4^{1}/_{2} \times ^{1}/_{2}$	41.21	8.527	19.186	1 x ¹ / ₄	96	80	71	77
5 x ¹ / ₄	24.03	5.264	13.159	1 x ¹ /4	91	50	46	51
5 x ⁵ /16	29.40	6.579	16.449	1 x ¹ / ₄	96	62	56	62
5 x ³ /8	34.76	7.895	19.738	1 x ¹ / ₄	96	74	66	72
5 x ¹ / ₂	45.50	10.527	26.318	1 x ¹ / ₄	96	96	87	93
5 ¹ / ₂ x ¹ / ₄	26.17	6.369	17.514	1 x ¹ / ₄	96	60	55	60
5 ¹ / ₂ x ³ / ₈	37.99	9.553	26.272	1 x ¹ /4	96	89	79	85
5 ¹ / ₂ x ¹ / ₂	49.80	12.738	35.029	1 x ¹ / ₄	96	96	96	96
6 x ¹ / ₄	28.32	7.580	22.739	1 x ¹ / ₄	96	71	64	70
6 x ⁵ /16	34.76	9.474	28.423	1 x ¹ / ₄	96	88	79	85
6 x ³ / ₈	41.21	11.369	34.108	1 x ¹ / ₄	96	96	94	96
6 x ¹ / ₂	54.09	15.159	45.477	1 x ¹ /4	96	96	96	96

*Span limited to ½00 of span = Deflection. **Based on 5.053 bars/ft of grating width. Bearing bars 2½° c.c. Note: When serrated grating is specified, the depth of grating required for a specified load will be ½″ greater than that shown in these tables. Weights shown are for 4″ cross bar centers. Add 1.13 lbs./sq. ft. (½″ Dia.) or 2.55 lbs./sq. ft. (1″ x ½″) for 2″ cross bar centers.

Load Tables

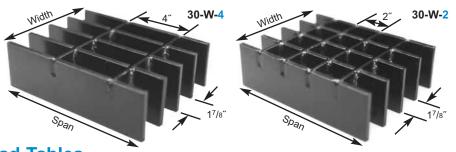
Rar Size

Maximum Safe (Concentrated	l vad* l	he - Clas	r Snan

	1'- 0"	1′- 6″	0' 0"										
1 × 1/1	. 0	1 - 0	2'- 0"	2'- 6"	3'- 0"	3′- 6″	4'- 0"	4′- 6″	5′- 0″	5′- 6″	6'- 0"	7′- 0″	8'- 0"
1 x 1/4	1407	938	703	563	469	402							
1 x 3/8	2107	1404	1053	843	702	602							
1-1/4 x 1/4	2193	1462	1097	877	731	627	548						
1-1/4 x 3/8	3287	2191	1643	1315	1096	939	822						
1-1/2 x 1/4	3160	2107	1580	1264	1053	903	790	702					
1-1/2 x 5/16	3947	2631	1973	1579	1316	1128	987	877					
	4740	3160	2370	1896	1580	1354	1185	1053					
1-3/4 x 1/4	4300	2867	2150	1720	1433	1229	1075	956	860				
1-3/4 x 3/8	6447	4298	3223	2579	2149	1842	1612	1433	1289				
2 x 1/4	5613	3742	2807	2245	1871	1604	1403	1247	1123				
2 x 5/16	7020	4680	3510	2808	2340	2006	1755	1560	1404				
	8420	5613	4210	3368	2807	2406	2105	1871	1684				
	7107	4738	3553	2843	2369	2030	1777	1579	1421	1292			
2-1/4 x 3/8 1	10660	7107	5330	4264	3553	3046	2665	2369	2132	1938			
2-1/2 x 1/4	8773	5849	4387	3509	2924	2507	2193	1950	1755	1595	1462		
	10967	7311	5483	4387	3656	3133	2742	2437	2193	1994	1828		
2-1/2 x 3/8 1	13160	8773	6580	5264	4387	3760	3290	2924	2632	2393	2193		
3 x 1/4 1	12633	8422	6317	5053	4211	3610	3158	2807	2527	2297	2106		
3 x 5/16 1	15793	10529	7897	6317	5264	4512	3948	3510	3159	2872	2632		
3 x 3/8 1	18947	12631	9473	7579	6316	5413	4737	4210	3789	3445	3158		
3 x 1/2 2	25267	16844	12633	10107	8422	7219	6317	5615	5053	4594	4211		
3-1/2 x 1/4 1	17193	11462	8597	6877	5731	4912	4298	3821	3439	3126	2866	2456	
3-1/2 x 3/8 2	25793	17196	12897	10317	8598	7370	6448	5732	5159	4690	4299	3685	
3-1/2 x 1/2 3	34387	22924	17193	13755	11462	9825	8597	7641	6877	6252	5731	4912	
4 x 1/4 2	22460	14973	11230	8984	7487	6417	5615	4991	4492	4084	3743	3209	
4 x 5/16 2	28073	18716	14037	11229	9358	8021	7018	6239	5615	5104	4679	4010	
4 x 3/8 3	33687	22458	16843	13475	11229	9625	8422	7486	6737	6125	5614	4812	
4 x 1/2 4	44913	29942	22457	17965	14971	12832	11228	9981	8983	8166	7486	6416	
4-1/2 x 1/4 2	28420	18947	14210	11368	9473	8120	7105	6316	5684	5167	4737	4060	3553
4-1/2 x 3/8 4	42633	28422	21317	17053	14211	12181	10658	9474	8527	7752	7106	6090	5329
4-1/2 x 1/2 5	56847	37898	28423	22739	18949	16242	14212	12633	11369	10336	9474	8121	7106
5 x 1/4 3	35093	23396	17547	14037	11698	10027	8773	7799	7019	6381	5849	5013	4387
5 x 5/16 4	43860	29240	21930	17544	14620	12531	10965	9747	8772	7975	7310	6266	5483
5 x 3/8 5	52633	35089	26317	21053	17544	15038	13158	11696	10527	9570	8772	7519	6579
5 x 1/2		46787	35090	28072	23393	20051	17545	15596	14036	12760	11697	10026	8773
5-1/2 x 1/4		28307	21230	16984	14153	12131	10615	9436	8492	7720	7077	6066	5308
5-1/2 x 3/8		42458	31843	25475	21229	18196	15922	14153	12737	11579	10614	9098	7961
5-1/2 x 1/2		56613	42460	33968	28307	24263	21230	18871	16984	15440	14153	12131	10615
6 x 1/4		33689	25267	20213	16844	14438	12633	11230	10107	9188	8422	7219	6317
6 x 5/16		42107	31580	25264	21053	18046	15790	14036	12632	11484	10527	9023	7895
6 x 3/8		50529	37897	30317	25264	21655	18948	16843	15159	13781	12632	10828	9474
6 x 1/2			50530	40424	33687	28874	25265	22458	20212	18375	16843	14437	12633

^{*}Based on 5.053 bars / ft. of grating width. Bearing bars 2-3/8" c.c.

Note: When serrated grating is specified, the depth of grating required for a specific load will be 1/4" greater than that shown in these tables. Loads are theoretical and are based on a unit stress of 20,000 psi.


Panel Width Chart (in.) 38-W-4 / 38-W-2

Dimensions Are Out-to-Out of Bearing Bars

No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1/4" Bars	2 ⁵ /8	5	7 ³ /8	93/4	12 ¹ /8	14 ¹ / ₂	16 ⁷ /8	19 ¹ /4	21 ⁵ /8	24	26 ³ /8	28 ³ / ₄	31 ¹ /8	33 ¹ / ₂	35 ⁷ /8
5/16" Bars	2 ¹¹ /16	5 ¹ /16	7 ⁷ /16	9 ¹³ /16	12 ³ /16	14 ⁹ /16	16 ¹⁵ /16	19 ⁵ /16	2111/16	24 ¹ /16	26 ⁷ /16	28 ¹³ /16	31 ³ /16	33 ⁹ /16	35 ¹⁵ /16
3/8" Bars	2 ³ /4	5 ¹ /8	71/2	9 ⁷ /8	12 ¹ /4	14 ⁵ /8	17	19 ³ /8	21 ³ / ₄	24 ¹ /8	26 ¹ / ₂	28 ⁷ /8	31 ¹ / ₄	33 ⁵ /8	36
¹ /2" Bars	2 ⁷ /8	5 ¹ /4	7 ⁵ /8	10	12 ³ /8	14 ³ / ₄	17 ¹ /8	19 ¹ /2	21 ⁷ /8	24 ¹ / ₄	26 ⁵ /8	29	31 ³ /8	33 ³ /4	36 ¹ /8

HEAVY DUTY WELDED STEEL

30 SPACE

	% Open Area*												
BB	СВ	Ве	aring Ba	r Thickne	ess								
Size	Ctrs	1/4" 5/16" 3/8" 1/2"											
Thru	4" cc	79%	76%	73%	_								
2 ¹ /2"	2" cc	72%	70%	67%	_								
3" to	4" cc	82%	78%	75%	69%								
6″	2" cc	77%	74%	71%	65%								

Load Tables

Bar Size,	Wt.** Lbs.	Section P Sx**, in ³	roperties lx**, in⁴	Cross Bar Size,	Ma	ximum Safe C Partially Dist	lear Span, Incl tributed Load	nes-
Inches	Sq. Ft.	Ft. Width	Ft. Width	Inches	1 Ton	3 Ton	5 Ton	H15/H20
1 x ¹ / ₄	6.57	0.267	0.133	³ / ₈ Dia	6	5	6	8
1 x ³ /8	9.29	0.400	0.200	³ / ₈ Dia	8	6	8	9
1 ¹ / ₄ x ¹ / ₄	7.93	0.417	0.260	³ / ₈ Dia	8	6	8	10
1 ¹ / ₄ x ³ / ₈	11.33	0.625	0.391	³ / ₈ Dia	11	8	10	12
1 ¹ / ₂ x ¹ / ₄	9.29	0.600	0.450	³ / ₈ Dia	11	8	9	12
1 ¹ / ₂ x ⁵ / ₁₆	11.33	0.750	0.563	³ / ₈ Dia	13	9	10	13
1 ¹ / ₂ x ³ / ₈	13.37	0.900	0.675	³ / ₈ Dia	15	10	12	14
1 ³ / ₄ x ¹ / ₄	10.65	0.817	0.715	³ / ₈ Dia	14	10	11	14
1 ³ / ₄ x ³ / ₈	15.40	1.225	1.072	³ / ₈ Dia	20	13	14	17
2 x ¹ / ₄	12.01	1.067	1.067	³ / ₈ Dia	18	12	13	16
2 x ⁵ /16	14.73	1.333	1.333	³ / ₈ Dia	22	14	15	18
2 x ³ / ₈	17.45	1.600	1.600	³ / ₈ Dia	26	16	17	20
2 ¹ / ₄ x ¹ / ₄	13.37	1.350	1.519	³ / ₈ Dia	22	14	15	18
2 ¹ / ₄ x ³ / ₈	19.49	2.025	2.278	³ / ₈ Dia	32	20	20	23
2 ¹ / ₂ x ¹ / ₄	14.73	1.667	2.083	³ / ₈ Dia	27	17	17	20
2 ¹ / ₂ x ⁵ / ₁₆	18.12	2.083	2.604	³ / ₈ Dia	33	20	20	24
2 ¹ / ₂ x ³ / ₈	21.53	2.500	3.125	³ / ₈ Dia	39	24	23	27
3 x ¹ / ₄	18.87	2.400	3.600	1 x ¹ / ₄	38	23	23	26
3 x ⁵ /16	22.95	3.000	4.500	1 x ¹ / ₄	47	28	27	31
3 x ³ / ₈	27.03	3.600	5.400	1 x ¹ / ₄	56	33	31	36
3 x ¹ / ₂	35.19	4.800	7.200	1 x ¹ / ₄	68*	42	40	45
3 ¹ / ₂ x ¹ / ₄	21.59	3.267	5.717	1 x ¹ / ₄	51	30	29	33
$3^{1}/_{2} \times {}^{3}/_{8}$	31.11	4.900	8.575	1 x ¹ / ₄	75*	43	41	46
$3^{1}/_{2} \times ^{1}/_{2}$	40.63	6.533	11.433	1 x ¹ / ₄	86*	57	53	59
4 x ¹ / ₄	24.31	4.267	8.533	1 x ¹ / ₄	66	38	36	41
4 x ⁵ / ₁₆	29.75	5.333	10.667	1 x ¹ / ₄	82	47	44	50
4 x ³ / ₈	35.19	6.400	12.800	1 x ¹ / ₄	91*	56	52	58
4 x ¹ / ₂	46.07	8.533	17.067	1 x ¹ / ₄	96	73	67	74
4 ¹ / ₂ x ¹ / ₄	27.03	5.400	12.150	1 x ¹ / ₄	83	47	44	50
4 ¹ / ₂ x ³ / ₈	39.27	8.100	18.225	1 x ¹ / ₄	96	69	64	71
$4^{1}/_{2} \times ^{1}/_{2}$	51.51	10.800	24.300	1 x ¹ / ₄	96	92	84	90*
5 x ¹ / ₄	29.75	6.667	16.667	1 x ¹ / ₄	96	58	54	60
5 x ⁵ /16	36.55	8.333	20.833	1 x ¹ / ₄	96	71	66	73
5 x ³ /8	43.35	10.000	25.000	1 x ¹ / ₄	96	85	78	86
5 x ¹ / ₂	56.95	13.333	33.333	1 x ¹ / ₄	96	96	96	96
5 ¹ / ₂ x ¹ / ₄	32.47	8.067	22.183	1 x ¹ / ₄	96	69	64	71
$5^{1}/_{2} \times ^{3}/_{8}$	47.43	12.100	33.275	1 x ¹ / ₄	96	96	93	96
5 ¹ / ₂ x ¹ / ₂	62.39	16.133	44.367	1 x ¹ / ₄	96	96	96	96
6 x ¹ / ₄	35.19	9.600	28.800	1 x ¹ / ₄	96	82	75	83
6 x ⁵ /16	43.35	12.000	36.000	1 x ¹ / ₄	96	96	93	96
6 x ³ / ₈	51.51	14.400	43.200	1 x ¹ / ₄	96	96	96	96
6 x ¹ / ₂	67.83	19.200	57.600	1 x ¹ / ₄	96	96	96	96

*Span limited to ½00 f span = Deflection. **Based on 6.4 bars/ft of grating width. Bearing bars 1½" c.c.

Note: When serrated grating is specified, the depth of grating required for a specified load will be ½" greater than that shown in these tables. Weights shown are for 4" cross bar centers. Add 1.13 lbs./sq. ft. (½" Dia.) or 2.55 lbs./sq. ft. (1" x ½") for 2" cross bar centers.

30 SPACE

Load Tables

Luau Tabi	Load Tables												
Bar Size				Maxin	num Safe	Concen	trated L	oad*, Lb	s Clear	Span			
Inches	1'- 0"	1′- 6″	2'- 0"	2'- 6"	3'- 0"	3'- 6"	4'- 0"	4'- 6"	5'- 0"	5'- 6"	6'- 0"	7′- 0″	8'- 0"
1 x 1/4	1780	1187	890	712	593	509			%	ОР	E NI	ARE	Λ *
1 x 3/8	2667	1778	1333	1067	889	762	1		76	UP		IG BAR THI	
1-1/4 x 1/4	2780	1853	1390	1112	927	794	695		BB Si	ze CB Ct		5/16" 3/8	
1-1/4 x 3/8	4167	2778	2083	1667	1389	1190	1042			4" cc		76% 739	
1-1/2 x 1/4	4000	2667	2000	1600	1333	1143	1000	889	thru 2-	1/2" 2" cc		70% 679	
1-1/2 x 5/16	5000	3333	2500	2000	1667	1429	1250	1111	3" - 6	4" cc		78% 759	
1-1/2 x 3/8	6000	4000	3000	2400	2000	1714	1500	1333	3 - 6	2" cc	77%	74% 719	% 65%
1-3/4 x 1/4	5447	3631	2723	2179	1816	1556	1362	1210	1089	T 4-		cal and are b	1
1-3/4 x 3/8	8167	5444	4083	3267	2722	2333	2042	1815	1633		nit stress of		ised
2 x 1/4	7113	4742	3557	2845	2371	2032	1778	1581	1423			, 1	
2 x 5/16	8887	5924	4443	3555	2962	2539	2222	1975	1777				
2 x 3/8	10667	7111	5333	4267	3556	3048	2667	2370	2133				
2-1/4 x 1/4	9000	6000	4500	3600	3000	2571	2250	2000	1800	1636			
2-1/4 x 3/8	13500	9000	6750	5400	4500	3857	3375	3000	2700	2455			
2-1/2 x 1/4	11113	7409	5557	4445	3704	3175	2778	2470	2223	2021	1852		
2-1/2 x 5/16	13887	9258	6943	5555	4629	3968	3472	3086	2777	2525	2314		
2-1/2 x 3/8	16667	11111	8333	6667	5556	4762	4167	3704	3333	3030	2778		
3 x 1/4	16000	10667	8000	6400	5333	4571	4000	3556	3200	2909	2667		
3 x 5/16	20000	13333	10000	8000	6667	5714	5000	4444	4000	3636	3333		
3 x 3/8	24000	16000	12000	9600	8000	6857	6000	5333	4800	4364	4000		
3 x 1/2	32000	21333	16000	12800	10667	9143	8000	7111	6400	5818	5333		
3-1/2 x 1/4	21780	14520	10890	8712	7260	6223	5445	4840	4356	3960	3630	3111	
3-1/2 x 3/8	32667	21778	16333	13067	10889	9333	8167	7259	6533	5939	5444	4667	
3-1/2 x 1/2	43553	29036	21777	17421	14518	12444	10888	9679	8711	7919	7259	6222	
4 x 1/4	28447	18964	14223	11379	9482	8128	7112	6321	5689	5172	4741	4064	
4 x 5/16	35553	23702	17777	14221	11851	10158	8888	7901	7111	6464	5926	5079	
4 x 3/8	42667	28444	21333	17067	14222	12190	10667	9481	8533	7758	7111	6095	
4 x 1/2	56887	37924	28443	22755	18962	16253	14222	12641	11377	10343	9481	8127	
4-1/2 x 1/4	36000	24000	18000	14400	12000	10286	9000	8000	7200	6545	6000	5143	4500
4-1/2 x 3/8	54000	36000	27000	21600	18000	15429	13500	12000	10800	9818	9000	7714	6750
4-1/2 x 1/2		48000	36000	28800	24000	20571	18000	16000	14400	13091	12000	10286	9000
5 x 1/4		29631	22223	17779	14816	12699	11112	9877	8889	8081	7408	6350	5556
5 x 5/16		37036	27777	22221	18518	15872	13888	12345	11111	10101	9259	7936	6944
5 x 3/8		44444	33333	26667	22222	19048	16667	14815	13333	12121	11111	9524	8333
5 x 1/2		59258	44443	35555	29629	25396	22222	19753	17777	16161	14814	12698	11111
5-1/2 x 1/4		35853	26890	21512	17927	15366	13445	11951	10756	9778	8963	7683	6723
5-1/2 x 3/8		53778	40333	32267	26889	23048	20167	17926	16133	14667	13444	11524	10083
5-1/2 x 1/2			53777	43021	35851	30730	26888	23901	21511	19555	17926	15365	13444
6 x 1/4			32000	25600	21333	18286	16000	14222	12800	11636	10667	9143	8000
6 x 5/16			40000	32000	26667	22857	20000	17778	16000	14545	13333	11429	10000
6 x 3/8			48000	38400	32000	27429	24000	21333	19200	17455	16000	13714	12000

^{*}Based on 6.4 bars / ft. of grating width. Bearing bars 1-7/8" c.c.

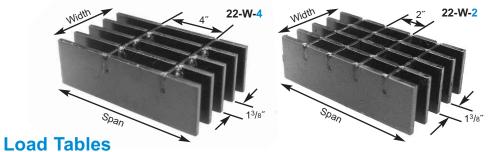
6 x 1/2

Note: When serrated grating is specified, the depth of grating required for a specific load will be 1/4" greater than that shown in these tables.

51200 42667

30-W-4 / 30-W-2 Panel Width Chart (in.)

Dimensions Are Out-to-Out of Bearing Bars


32000 28444 25600 23273 21333 18286 16000

No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
¹ /4" Bars	2 ¹ /8	4	5 ⁷ /8	73/4	9 ⁵ /8	11 ¹ /2	13 ³ /8	15 ¹ /4	17 ¹ /8	19	20 ⁷ /8	22 ³ /4	24 ⁵ /8	26 ¹ / ₂	28 ³ /8
⁵ /16" Bars	2 ³ /16	4 ¹ /16	5 ¹⁵ /16	7 ¹³ /16	9 ¹¹ /16	11 ⁹ /16	13 ⁷ /16	15 ⁵ /16	17 ³ /16	19 ¹ /16	2015/16	22 ¹³ /16	2411/16	26 ⁹ /16	28 ⁷ /16
3/8" Bars	2 ¹ /4	4 ¹ /8	6	77/8	9 ³ /4	11 ⁵ /8	13 ¹ / ₂	15 ³ /8	17 ¹ /4	19 ¹ /8	21	22 ⁷ /8	24 ³ / ₄	26 ⁵ /8	28 ¹ / ₂
¹ /2" Bars	2 ³ /8	4 ¹ / ₄	6 ¹ /8	8	9 ⁷ /8	11 ³ / ₄	13 ⁵ /8	15 ¹ /2	17 ³ /8	19 ¹ / ₄	21 ¹ /8	23	24 ⁷ /8	26 ³ / ₄	28 ⁵ /8
	4-	4.0	4.0												
No. of Bars	17	18	19	20											
1/4" Bars	30 ¹ / ₄	32 ¹ /8	34	35 ⁷ /8											
5/16" Bars	30 ⁵ /16	32 ³ /16	34 ¹ /16	35 ¹⁵ /16											
3/8" Bars	30 ³ /8	32 ¹ / ₄	34 ¹ /8	36											
¹ /2" Bars	30 ¹ / ₂	32 ³ /8	34 ¹ / ₄	36 ¹ /8											

36571

HEAVY DUTY WELDED STEEL

22 SPACE

	% Open Area*												
BB	СВ	Bearing Bar Thickness											
Size	Ctrs	rs ¹ /4" ⁵ /16" ³ /8" ¹ /2"											
Thru	4" cc	75%	70%	66%	_								
2 ¹ /2"	2" cc	68%	64%	60%	_								
3" to	4" cc	77%	72%	68%	60%								
6″	2" cc	72%	68%	64%	56%								

Bar	Wt.**		roperties	Cross	Maximum Safe Clear Span, Inches- Partially Distributed Load						
Size, Inches	Lbs. Sg. Ft.	Sx**, in³ Ft. Width	lx**, in⁴ Ft. Width	Bar Size, Inches	1 Ton	3 Ton	5 Ton	H15/H20			
1 x ¹ / ₄	8.54	0.364	0.182	³ / ₈ Dia	6	6	7	9			
1 x ³ /8	12.25	0.545	0.162	³ / ₈ Dia	9	7	9	11			
1 X ⁻ /8 1 ¹ / ₄ X ¹ / ₄	10.40	0.545	0.273	³ / ₈ Dia	9	7	9	11			
1 1/4 X 1/4 1 1/4 X 3/8	15.04			³ / ₈ Dia	13	9		13			
1 1/4 X 3/8 1 1/2 X 1/4	12.25	0.852 0.818	0.533 0.614	³ / ₈ Dia	12	9	11	13			
1 1/2 X 1/4 1 1/2 X 5/16	15.04	1.023	0.614	³ / ₈ Dia	15	11	12	15			
1 1/2 X 3/16 1 1/2 X 3/8	17.82	1.023	0.767	³ / ₈ Dia	18	12	13	16			
1 ¹ /2 X ³ /8 1 ³ /4 X ¹ /4	17.82	1.227	0.920	³ / ₈ Dia	16	12	13	15			
1 ³ / ₄ x ³ / ₈	20.59	1.114	1.462	³ / ₈ Dia	23	15	16	20			
2 x ¹ / ₄	15.96	1.670	1.462	³ / ₈ Dia	23	15	15	18			
2 x ⁻ / ₄ 2 x ⁵ / ₁₆	19.67	1.455	1.455	³ / ₈ Dia	25	17	17	21			
2 x ⁹ /16 2 x ³ /8				³ / ₈ Dia	30	17	20				
2 X ³ /8 2 ¹ / ₄ X ¹ / ₄	23.38 17.82	2.182 1.841	2.182 2.071	³ / ₈ Dia	26	19	18	24			
2 ¹ /4 x ¹ /4 2 ¹ /4 x ³ /8				³ / ₈ Dia							
	26.16	2.761	3.106		38	24	24	28			
2 ¹ / ₂ x ¹ / ₄	19.67	2.273	2.841	³ / ₈ Dia	31	20	20	24			
2 ¹ / ₂ x ⁵ / ₁₆	24.30	2.841	3.551	³ / ₈ Dia	39	24	24	29			
2 ¹ / ₂ x ³ / ₈	28.95	3.409	4.261	³ / ₈ Dia	46	28	28	33			
3 x ¹ / ₄	24.80	3.273	4.909	1 x ¹ / ₄	45	27	27	32			
3 x ⁵ / ₁₆	30.37	4.091	6.136	1 x ¹ / ₄	55	33	33	38			
3 x ³ / ₈	35.93	4.909	7.363	1 x ¹ / ₄	64*	40	38	44			
3 x ¹ / ₂	47.06	6.545	9.818	1 x ¹ / ₄	74*	52	50	57*			
3 ¹ / ₂ x ¹ / ₄	28.51	4.454	7.795	1 x ¹ / ₄	60	36	35	41			
$3^{1}/_{2} \times {}^{3}/_{8}$	41.50	6.682	11.693	1 x ¹ / ₄	81*	53	50	58			
3 ¹ / ₂ x ¹ / ₂	54.48	8.909	15.590	1 x ¹ / ₄	94*	69	66	71*			
4 x ¹ / ₄	32.22	5.818	11.636	1 x ¹ / ₄	78	46	45	51			
4 x ⁵ / ₁₆	39.64	7.273	14.545	1 x ¹ / ₄	91*	57	54	62			
4 x ³ / ₈	47.06	8.727	17.454	1 x ¹ / ₄	96	68	64	73			
4 x ¹ / ₂	61.89	11.636	23.272	1 x ¹ / ₄	96	86*	83*	87*			
4 ¹ / ₂ x ¹ / ₄	35.93	7.363	16.568	1 x ¹ / ₄	96	58	55	63			
4 ¹ / ₂ x ³ / ₈	52.63	11.045	24.851	1 x ¹ / ₄	96	85	80	89*			
4 ¹ / ₂ x ¹ / ₂	69.31	14.727	33.135	1 x ¹ / ₄	96	96	96	96			
5 x ¹ / ₄	39.64	9.091	22.727	1 x ¹ / ₄	96	71	67	76			
5 x ⁵ / ₁₆	48.92	11.363	28.408	1 x ¹ / ₄	96	88	82	92			
5 x ³ / ₈	58.18	13.636	34.090	1 x ¹ / ₄	96	96	96	96			
5 x ¹ / ₂	76.73	18.181	45.453	1 x ¹ / ₄	96	96	96	96			
5 ¹ / ₂ x ¹ / ₄	43.35	11.000	30.249	1 x ¹ / ₄	96	85	80	90			
$5^{1}/_{2} \times ^{3}/_{8}$	63.75	16.499	45.374	1 x ¹ / ₄	96	96	96	96			
5 ¹ / ₂ x ¹ / ₂	84.15	21.999	60.498	1 x ¹ / ₄	96	96	96	96			
6 x ¹ / ₄	47.06	13.091	39.272	1 x ¹ / ₄	96	96	94	96			
6 x ⁵ /16	58.18	16.363	49.089	1 x ¹ / ₄	96	96	96	96			
6 x ³ /8	69.31	19.636	58.907	1 x ¹ / ₄	96	96	96	96			
6 x ¹ / ₂	91.57	26.181	78.543	1 x ¹ / ₄	96	96	96	96			

*Span limited to ½00 of span = Deflection. **Based on 8.727 bars/ft of grating width. Bearing bars 13% c.c.

Note: When serrated grating is specified, the depth of grating required for a specified load will be ½ greater than that shown in these tables. Weights shown are for 4" cross bar centers. Add 1.13 lbs./sq. ft. (¾" Dia.) or 2.55 lbs./sq. ft. (1" x ½") for 2" cross bar centers.

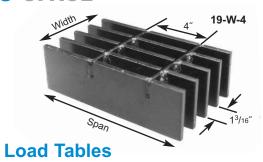
Load Tables 22 SPACE

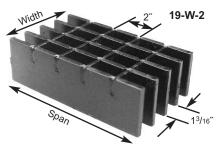
Maximum Safe Concentrated Load*, Lbs.-Clear Span **Bar Size** 1'- 0" 1'- 6" 2'- 0" 2'- 6" 3'- 0" 3'- 6" 4'-0" 4'-6" 5'-0" 5'-6" 6'-0" 7'-0" 8'-0" Inches 1 x 1/4 N AREA 1 x 3/8 BEARING BAR THICKNESS 1-1/4 x 1/4 BB Size **CB** Ctrs 1/4" 5/16" 3/8" 1/2" 1-1/4 x 3/8 75% 70% 66% thru 2-1/2" 60% 2" cc 68% 64% 1-1/2 x 1/4 4" cc 77% 72% 68% 60% 1-1/2 x 5/16 3" - 6" 2" cc 72% 68% 64% 1-1/2 x 3/8 1-3/4 x 1/4 Loads are theoretical, and are based 1-3/4 x 3/8 on a unit stress of 20,000 psi. 2 x 1/4 2 x 5/16 2 x 3/8 2-1/4 x 1/4 2-1/4 x 3/8 2-1/2 x 1/4 2-1/2 x 5/16 2-1/2 x 3/8 3 x 1/4 3 x 5/16 3 x 3/8 3 x 1/2 3-1/2 x 1/4 3-1/2 x 3/8 3-1/2 x 1/2 4 x 1/4 4 x 5/16 4 x 3/8 4 x 1/2 4-1/2 x 1/4 4-1/2 x 3/8 4-1/2 x 1/2 5 x 1/4 5 x 5/16 5 x 3/8 5 x 1/2 5-1/2 x 1/4 5-1/2 x 3/8 5-1/2 x 1/2 6 x 1/4 6 x 5/16 6 x 3/8

6 x 1/2

Note: When serrated grating is specified, the depth of grating required for a specific load will be 1/4" greater than that shown in these tables.

22-W-4 / 22-W-2 Panel Width Chart (in.)


Dimensions Are Out-to-Out of Bearing Bars


No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
¹ /4" Bars	1 ⁵ /8	3	4 ³ /8	5 ³ /4	7 ¹ /8	8 ¹ / ₂	9 ⁷ /8	11 ¹ / ₄	12 ⁵ /8	14	15 ³ /8	16 ³ / ₄	18 ¹ /8	19 ¹ / ₂	20 ⁷ /8
⁵ /16" Bars	1 ¹¹ / ₁₆	3 ¹ /16	4 ⁷ /16	5 ¹³ /16	7 ³ /16	8 ⁹ /16	9 ¹⁵ /16	11 ⁵ /16	12 ¹¹ / ₁₆	14 ¹ /16	15 ⁷ /16	16 ¹³ /16	18 ³ /16	19 ⁹ /16	2015/16
3/8" Bars	1 ³ /4	3 ¹ /8	4 ¹ / ₂	5 ⁷ /8	71/4	85/8	10	11 ³ /8	12 ³ / ₄	14 ¹ /8	15 ¹ / ₂	16 ⁷ /8	18 ¹ / ₄	19 ⁵ /8	21
¹ /2" Bars	1 ⁷ /8	3 ¹ /4	4 ⁵ /8	6	7 ³ /8	83/4	10 ¹ /8	11 ¹ / ₂	12 ⁷ /8	14 ¹ / ₄	15 ⁵ /8	17	18 ³ /8	19 ³ /4	21 ¹ /8
No of Dana	47	40	40	20	04	00	00	0.4	٥٢	00	07				
No. of Bars	17	18	19	20	21	22	23	24	25	26	27				
1/4" Bars	22 ¹ / ₄	23 ⁵ /8	25	26 ³ /8	27 ³ /4	29 ¹ /8	30 ¹ / ₂	31 ⁷ /8	33 ¹ / ₄	34 ⁵ /8	36				
5/16" Bars	22 ⁵ /16	23 ¹¹ /16	25 ¹ /16	26 ⁷ /16	27 ¹³ /16	29 ³ /16	30 ⁹ /16	31 ¹⁵ / ₁₆	33 ⁵ /16	3411/16	36 ¹ /16				
3/8" Bars	22 ³ /8	233/4	25 ¹ /8	26 ¹ / ₂	27 ⁷ /8	29 ¹ / ₄	30 ⁵ /8	32	33 ³ /8	343/4	36 ¹ /8				
¹ /2" Bars	22 ¹ / ₂	23 ⁷ /8	25 ¹ / ₄	26 ⁵ /8	28	293/8	303/4	32 ¹ /8	33 ¹ / ₂	34 ⁷ /8	36 ¹ / ₄				

^{*}Based on 8.727 bars / ft. of grating width. Bearing bars 1-3/8" c.c

HEAVY DUTY WELDED STEEL

19 SPACE

		% Ope	ı Area*	+	
BB	СВ	Be	aring Ba	r Thickne	ess
Size	Ctrs	1/4"	⁵ /16″	³ /8″	1/2"
Thru	4" cc	72%	67%	62%	_
2 ¹ /2"	2" cc	65%	61%	56%	_
3" to	4" cc	74%	69%	64%	54%
6″	2" cc	70%	65%	60%	51%

Bar Size,	Wt.** Lbs.	Section P	roperties	Cross Bar Size,	Ма	ximum Safe C	lear Span, Incl tributed Load	nes-
Inches	Sq. Ft.	Ft. Width	Ft. Width	Inches	1 Ton	3 Ton	5 Ton	H15/H20
1 x ¹ / ₄	9.71	0.421	0.211	³ / ₈ Dia	7	6	7	9
1 x ³ /8	14.01	0.632	0.316	³ / ₈ Dia	9	8	9	11
1 ¹ / ₄ x ¹ / ₄	11.87	0.658	0.411	³ / ₈ Dia	10	8	9	12
1 ¹ / ₄ x ³ / ₈	17.23	0.987	0.617	³ / ₈ Dia	14	10	12	14
1 ¹ / ₂ x ¹ / ₄	14.01	0.947	0.711	³ / ₈ Dia	13	10	11	14
1 ¹ / ₂ x ⁵ / ₁₆	17.23	1.184	0.888	³ / ₈ Dia	16	11	13	16
1 ¹ / ₂ x ³ / ₈	20.46	1.421	1.066	³ / ₈ Dia	19	13	14	18
1 ³ / ₄ x ¹ / ₄	16.16	1.289	1.128	³ / ₈ Dia	17	12	14	17
1 ³ / ₄ x ³ / ₈	23.67	1.934	1.692	³ / ₈ Dia	25	17	18	21
2 x ¹ / ₄	18.30	1.684	1.684	³ / ₈ Dia	22	15	16	20
2 x ⁵ / ₁₆	22.60	2.105	2.105	³ / ₈ Dia	28	18	19	23
2 x ³ / ₈	26.89	2.526	2.526	³ / ₈ Dia	33	21	22	26
2 ¹ / ₄ x ¹ / ₄	20.46	2.132	2.398	³ / ₈ Dia	28	18	19	23
2 ¹ / ₄ x ³ / ₈	30.12	3.197	3.597	³ / ₈ Dia	41	26	26	31
2 ¹ / ₂ x ¹ / ₄	22.60	2.632	3.289	³ / ₈ Dia	34	22	22	27
2 ¹ / ₂ x ⁵ / ₁₆	27.96	3.289	4.112	³ / ₈ Dia	42	27	27	31
2 ¹ / ₂ x ³ / ₈	33.34	3.947	4.934	³ / ₈ Dia	50	31	31	36
3 x ¹ / ₄	28.32	3.789	5.684	1 x ¹ / ₄	49	30	30	35
3 x ⁵ /16	34.76	4.737	7.105	1 x ¹ / ₄	60	37	36	42
3 x ³ / ₈	41.20	5.684	8.526	1 x ¹ / ₄	67*	44	43	49
3 x ¹ / ₂	54.09	7.579	11.368	1 x ¹ / ₄	78*	57	55	61*
3 ¹ / ₂ x ¹ / ₄	32.61	5.158	9.026	1 x ¹ / ₄	66	40	39	45
$3^{1}/_{2} \times {}^{3}/_{8}$	47.65	7.737	13.539	1 x ¹ / ₄	85*	58	56	64
3 ¹ / ₂ x ¹ / ₂	62.67	10.316	18.052	1 x ¹ / ₄	96	75*	72*	76*
4 x ¹ / ₄	36.91	6.737	13.473	1 x ¹ / ₄	85*	51	50	57
4 x ⁵ /16	45.50	8.421	16.842	1 x ¹ / ₄	95*	63	61	70
4 x ³ /8	54.09	10.105	20.210	1 x ¹ / ₄	96	75	72	80*
4 x ¹ / ₂	71.26	13.473	26.947	1 x ¹ / ₄	96	91*	88*	92*
4 ¹ / ₂ x ¹ / ₄	41.20	8.526	19.184	1 x ¹ / ₄	96	64	61	70
$4^{1}/_{2} \times ^{3}/_{8}$	60.53	12.789	28.776	1 x ¹ / ₄	96	94*	90	95*
$4^{1}/_{2} \times ^{1}/_{2}$	79.85	17.052	38.367	1 x ¹ / ₄	96	96	96	96
5 x ¹ / ₄	45.50	10.526	26.315	1 x ¹ / ₄	96	78	75	85
5 x ⁵ /16	56.24	13.158	32.894	1 x ¹ / ₄	96	96	92	96
5 x ³ /8	66.97	15.789	39.473	1 x ¹ / ₄	96	96	96	96
5 x ¹ / ₂	88.44	21.052	52.630	1 x ¹ / ₄	96	96	96	96
5 ¹ / ₂ x ¹ / ₄	49.79	12.737	35.025	1 x ¹ / ₄	96	94	89	96
$5^{1}/_{2} \times {}^{3}/_{8}$	73.42	19.105	52.538	1 x ¹ / ₄	96	96	96	96
5 ¹ / ₂ x ¹ / ₂	97.03	25.473	70.051	1 x ¹ / ₄	96	96	96	96
6 x ¹ / ₄	54.09	15.158	45.473	1 x ¹ / ₄	96	96	96	96
6 x ⁵ /16	66.97	18.947	56.841	1 x ¹ / ₄	96	96	96	96
6 x ³ / ₈	79.85	22.736	68.209	1 x ¹ / ₄	96	96	96	96
6 x ¹ / ₂	105.62	30.315	90.945	1 x ¹ / ₄	96	96	96	96

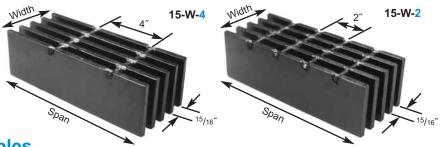
*Span limited to ½200 f span = Deflection. **Based on 10.105 bars/ft of grating width. Bearing bars 13/1," c.c.
Note: When serrated grating is specified, the depth of grating required for a specified load will be ¼" greater than that shown in these tables. Weights shown are for 4" cross bar centers. Add 1.13 lbs./sq. ft. (½1/2 Dia.) or 2.55 lbs./sq. ft. (1" x ¼") for 2" cross bar centers.

19 SPACE **Load Tables**

Maximum Safe Concentrated Load*, Lbs. - Clear Span Bar Size 1'-0" 1'- 6" 2'-0" 2'-6" 3'-0" 3'-6" 4'-0" | 4'-6" | 5'-0" | 5'-6" 6'-0" 7'-0" 8'-0" Inches 1 x 1/4 OPEN AREA 1 x 3/8 BEARING BAR THICKNESS 1-1/4 x 1/4 BB Size CB Ctrs 1/4" 5/16" 3/8" 1/2" 1-1/4 x 3/8 72% 67% 62% thru 2-1/2 61% 1-1/2 x 1/4 56% 54% 74% 69% 64% 1-1/2 x 5/16 4" cc 3" - 6" 2" cc 60% 51% 65% 1-1/2 x 3/8 1-3/4 x 1/4 Loads are theoretical, and are based 1-3/4 x 3/8 on a unit stress of 20,000 psi. 2 x 1/4 2 x 5/16 2 x 3/8 2-1/4 x 1/4 2-1/4 x 3/8 2-1/2 x 1/4 2-1/2 x 5/16 2-1/2 x 3/8 3 x 1/4 3 x 5/16 3 x 3/8 3 x 1/2 3-1/2 x 1/4 3-1/2 x 3/8 3-1/2 x 1/2 4 x 1/4 4 x 5/16 4 x 3/8 4 x 1/2 4-1/2 x 1/4 4-1/2 x 3/8 4-1/2 x 1/2 5 x 1/4 5 x 5/16 5 x 3/8 5 x 1/2 5-1/2 x 1/4 5-1/2 x 3/8 5-1/2 x 1/2 6 x 1/4 6 x 5/16 6 x 3/8 6 x 1/2

*Based on 10.105 bars / ft. of grating width. Bearing bars 1-3/16" c.c.

Note: When serrated grating is specified, the depth of grating required for a specific load will be 1/4" greater than that shown in these tables.


19-W-4 / 19-W-2 Panel Width Chart (in.)

Dimensions Are Out-to-Out of Bearing Bars

No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1/4" Bars	1 ⁷ /16	2 ⁵ /8	3 ¹³ /16	5	6 ³ /16	73/8	8 ⁹ /16	93/4	10 ¹⁵ /16	12 ¹ /8	13 ⁵ /16	14 ¹ / ₂	15 ¹¹ /16	16 ⁷ /8	18 ¹ /16
⁵ /16" Bars	1 ¹ /2	2 ¹¹ /16	3 ⁷ /8	5 ¹ /16	6 ¹ / ₄	7 ⁷ /16	8 ⁵ /8	9 ¹³ /16	11	12 ³ /16	13 ³ /8	14 ⁹ /16	15 ³ / ₄	16 ¹⁵ /16	18 ¹ /8
³ /8" Bars	1 ⁹ /16	2 ³ /4	3 ¹⁵ /16	5 ¹ /8	6 ⁵ /16	71/2	8 ¹¹ /16	9 ⁷ /8	11 ¹ /16	12 ¹ /4	13 ⁷ /16	14 ⁵ /8	15 ¹³ /16	17	18 ³ /16
¹ /2" Bars	1 ¹¹ / ₁₆	2 ⁷ /8	4 ¹ /16	5 ¹ /4	6 ⁷ /16	7 ⁵ /8	8 ¹³ /16	10	11 ³ /16	12 ³ /8	13 ⁹ /16	14 ³ / ₄	15 ¹⁵ /16	17 ¹ /8	18 ⁵ /16
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
															_
1/4" Bars	19 ¹ /4	20 ⁷ /16	21 ⁵ /8	22 ¹³ /16	24	25 ³ /16	26 ³ /8	27 ⁹ /16	$28^{3}/_{4}$	29 ¹⁵ / ₁₆	31 ¹ /8	32 ⁵ /16	33 ¹ / ₂	34 ¹¹ /16	35 ⁷ /8
5/16" Bars	19 ⁵ /16	20 ¹ /2	21 ¹¹ / ₁₆	22 ⁷ /8	24 ¹ /16	25 ¹ / ₄	26 ⁷ /16	27 ⁵ /8	28 ¹³ /16	30	31 ³ /16	32 ³ /8	339/16	343/4	35 ¹⁵ /16
3/8" Bars	19 ³ /8	20 ⁹ /16	21 ³ / ₄	22 ¹⁵ /16	24 ¹ /8	25 ⁵ /16	26 ¹ / ₂	27 ¹¹ /16	28 ⁷ /8	301/16	31 ¹ / ₄	32 ⁷ /16	33 ⁵ /8	34 ¹³ /16	36
¹ /2" Bars	19 ¹ / ₂	20 ¹¹ /16	21 ⁷ /8	23 ¹ / ₁₆	24 ¹ / ₄	25 ⁷ /16	26 ⁵ /8	27 ¹³ /16	29	30 ³ /16	31 ³ /8	32 ⁹ /16	33 ³ /4	34 ¹⁵ /16	36 ¹ /8

HEAVY DUTY WELDED STEEL

15 SPACE

	% (pen A	rea*	
BB	СВ	Bearing	g Bar Thi	ickness
Size	Ctrs	1/4"	⁵ /16″	³ /8″
Thru	4" cc	66%	60%	54%
2 ¹ /2"	2" cc	60%	55%	49%
3" to	4" cc	69%	62%	56%
6″	2" cc	64%	58%	53%

Load Tables

Bar Size,	Wt.** Lbs.	Section P	roperties lx**, in⁴	Cross Bar Size,	Ма	ximum Safe Cl Partially Dist	lear Span, Incl tributed Load	nes-
Inches	Sq. Ft.	Ft. Width	Ft. Width	Inches	1 Ton	3 Ton	5 Ton	H15/H20
1 x ¹ / ₄	12.01	0.533	0.267	³ / ₈ Dia	8	7	8	10
1 x ³ /8	17.45	0.800	0.400	³ / ₈ Dia	11	8	10	13
1 ¹ / ₄ x ¹ / ₄	14.73	0.833	0.521	³ / ₈ Dia	11	9	10	13
1 ¹ / ₄ x ³ / ₈	21.53	1.250	0.781	³ / ₈ Dia	16	11	13	16
1 ¹ / ₂ x ¹ / ₄	17.45	1.200	0.900	³ / ₈ Dia	15	11	13	16
1 ¹ /2 x ⁵ /16	21.53	1.500	1.125	³ / ₈ Dia	19	13	15	18
1 ¹ / ₂ x ³ / ₈	25.61	1.800	1.350	³ / ₈ Dia	22	15	16	20
1 ³ / ₄ x ¹ / ₄	20.17	1.633	1.429	³ / ₈ Dia	20	14	15	19
1 ³ / ₄ x ³ / ₈	29.68	2.450	2.144	³ / ₈ Dia	30	20	21	25
2 x ¹ / ₄	22.89	2.133	2.133	³ / ₈ Dia	26	17	19	22
2 x ⁵ /16	28.33	2.667	2.667	³ / ₈ Dia	32	21	22	26
2 x ³ /8	33.77	3.200	3.200	³ / ₈ Dia	38	25	25	30
2 ¹ / ₄ x ¹ / ₄	25.61	2.700	3.038	³ / ₈ Dia	32	21	22	26
2 ¹ / ₄ x ³ / ₈	37.85	4.050	4.556	³ / ₈ Dia	47*	30	31	36
2 ¹ / ₂ x ¹ / ₄	28.33	3.333	4.167	³ / ₈ Dia	40	26	26	31
2 ¹ / ₂ x ⁵ / ₁₆	35.12	4.167	5.208	³ / ₈ Dia	49	31	32	37
2 ¹ / ₂ x ³ / ₈	41.93	5.000	6.250	³ / ₈ Dia	55*	37	37	43
3 x ¹ / ₄	35.19	4.800	7.200	1 x ¹ / ₄	56	36	36	42
3 x ⁵ /16	43.36	6.000	9.000	1 x ¹ / ₄	66*	44	43	50
3 x ³ /8	51.51	7.200	10.800	1 x ¹ / ₄	73*	52	51	59*
$3^{1}/_{2} \times ^{1}/_{4}$	40.63	6.533	11.433	1 x ¹ / ₄	75*	47	47	54
$3^{1}/_{2} \times {}^{3}/_{8}$	59.68	9.800	17.150	1 x ¹ / ₄	92*	69	67	73*
4 x ¹ / ₄	46.07	8.533	17.067	1 x ¹ / ₄	92*	61	59	69
4 x ⁵ /16	56.95	10.667	21.333	1 x ¹ / ₄	96	75	73	81*
4 x ³ /8	67.83	12.800	25.600	1 x ¹ / ₄	96	87*	84*	89*
4 ¹ / ₂ x ¹ / ₄	51.51	10.800	24.300	1 x ¹ / ₄	96	76	74	85
$4^{1}/_{2} \times ^{3}/_{8}$	76.00	16.200	36.450	1 x ¹ / ₄	96	96	96	96
5 x ¹ / ₄	56.95	13.333	33.333	1 x ¹ / ₄	96	93	90	96
5 x ⁵ /16	70.56	16.667	41.667	1 x ¹ / ₄	96	96	96	96
5 x ³ /8	84.15	20.000	50.000	1 x ¹ / ₄	96	96	96	96
5 ¹ / ₂ x ¹ / ₄	62.39	16.133	44.367	1 x ¹ / ₄	96	96	96	96
5 ¹ / ₂ x ³ / ₈	92.32	24.200	66.550	1 x ¹ / ₄	96	96	96	96
6 x ¹ / ₄	67.83	19.200	57.600	1 x ¹ / ₄	96	96	96	96
6 x ⁵ /16	84.15	24.000	72.000	1 x ¹ / ₄	96	96	96	96
6 x ³ /8	100.47	28.800	86.400	1 x ¹ / ₄	96	96	96	96

*Span limited to ½00 of span = Deflection. **Bassed on 12.8 bars/ft of grating width. Bearing bars ½1/6" c.c.

Note: When serrated grating is specified, the depth of grating required for a specified load will be ¼" greater than that shown in these tables. Weights shown are for 4" cross bar centers. Add 1.13 lbs./sq. ft. (¾" Dia.) or 2.55 lbs./sq. ft. (1" x ¼") for 2" cross bar centers.

15 SPACE **Load Tables**

Maximum Safe Concentrated Load*, Lbs. - Clear Span

Bar Size									S Cicai	Оран			
Inches	1′- 0″	1′- 6″	2′- 0″	2′- 6″	3′- 0″	3′- 6″	4'- 0"	4′- 6″	5′- 0″	5′- 6″	6′- 0″	7′- 0″	8'- 0"
1 x 1/4	3553	2369	1777	1421	1184	1015				% 0	PEN	ARE	Δ*
1 x 3/8	5333	3556	2667	2133	1778	1524		_		<i>7</i> 0		ARING BAR T	
1-1/4 x 1/4	5553	3702	2777	2221	1851	1587	1388		В	BB Size C		/4" 5/16	
1-1/4 x 3/8	8333	5556	4167	3333	2778	2381	2083					6% 60%	
1-1/2 x 1/4	8000	5333	4000	3200	2667	2286	2000	1778	th	nru 2-1/2"	2" cc 6	0% 55%	49%
1-1/2 x 5/16	10000	6667	5000	4000	3333	2857	2500	2222		3" - 6"	1 00	9% 62%	
1-1/2 x 3/8	12000	8000	6000	4800	4000	3429	3000	2667	L	0 0	2" cc 6	4% 58%	53%
1-3/4 x 1/4	10887	7258	5443	4355	3629	3110	2722	2419	2177	Lood	o ono theoretic	cal and based	
1-3/4 x 3/8	16333	10889	8167	6533	5444	4667	4083	3630	3267		anit stress of		·
2 x 1/4	14220	9480	7110	5688	4740	4063	3555	3160	2844	1		, 1	
2 x 5/16	17780	11853	8890	7112	5927	5080	4445	3951	3556				
2 x 3/8	21333	14222	10667	8533	7111	6095	5333	4741	4267	1			
2-1/4 x 1/4	18000	12000	9000	7200	6000	5143	4500	4000	3600	3273			
2-1/4 x 3/8	27000	18000	13500	10800	9000	7714	6750	6000	5400	4909			
2-1/2 x 1/4	22220	14813	11110	8888	7407	6349	5555	4938	4444	4040	3703		
2-1/2 x 5/16	27780	18520	13890	11112	9260	7937	6945	6173	5556	5051	4630	1	
2-1/2 x 3/8	33333	22222	16667	13333	11111	9524	8333	7407	6667	6061	5556		
3 x 1/4	32000	21333	16000	12800	10667	9143	8000	7111	6400	5818	5333		
3 x 5/16	40000	26667	20000	16000	13333	11429	10000	8889	8000	7273	6667		
3 x 3/8	48000	32000	24000	19200	16000	13714	12000	10667	9600	8727	8000		
3-1/2 x 1/4	43553	29036	21777	17421	14518	12444	10888	9679	8711	7919	7259	6222]
3-1/2 x 3/8	65333	43556	32667	26133	21778	18667	16333	14519	13067	11879	10889	9333	
4 x 1/4	56887	37924	28443	22755	18962	16253	14222	12641	11377	10343	9481	8127	
4 x 5/16		47409	35557	28445	23704	20318	17778	15803	14223	12930	11852	10159	
4 x 3/8		56889	42667	34133	28444	24381	21333	18963	17067	15515	14222	12190	
4-1/2 x 1/4		48000	36000	28800	24000	20571	18000	16000	14400	13091	12000	10286	9000
4-1/2 x 3/8			54000	43200	36000	30857	27000	24000	21600	19636	18000	15429	13500
5 x 1/4			44443	35555	29629	25396	22222	19753	17777	16161	14814	12698	11111
5 x 5/16			55557	44445	37038	31747	27778	24692	22223	20202	18519	15873	13889
5 x 3/8			66667	53333	44444	38095	33333	29630	26667	24242	22222	19048	16667
5-1/2 x 1/4			53777	43021	35851	30730	26888	23901	21511	19555	17926	15365	13444
5-1/2 x 3/8					53778	46095	40333	35852	32267	29333	26889	23048	20167
6 x 1/4					42667	36571	32000	28444	25600	23273	21333	18286	16000
6 x 5/16					53333	45714	40000	35556	32000	29091	26667	22857	20000
6 x 3/8						54857	48000	42667	38400	34909	32000	27429	24000

^{*}Based on 12.8 bars / ft. of grating width. Bearing bars 15/16" c.c.

Note: When serrated grating is specified, the depth of grating required for a specific load will be 1/4" greater than that shown in these tables.

15-W-4 / 15-W-2 Panel Width Chart (in.) Dimensions Are Out-to-Out of Bearing Bars

					. ,										
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
¹ /4" Bars	1 ³ /16	2 ¹ /8	3 ¹ /16	4	4 ¹⁵ /16	5 ⁷ /8	6 ¹³ /16	73/4	8 ¹¹ /16	95/8	10 ⁹ /16	11 ¹ /2	12 ⁷ /16	13 ³ /8	14 ⁵ /16
⁵ /16" Bars	1 ¹ /4	2 ³ /16	3 ¹ /8	4 ¹ /16	5	5 ¹⁵ /16	6 ⁷ /8	7 ¹³ /16	83/4	911/16	10 ⁵ /8	11 ⁹ /16	12 ¹ / ₂	13 ⁷ /16	14 ³ /8
3/8" Bars	1 ⁵ /16	2 ¹ /4	3 ³ /16	4 ¹ /8	5 ¹ /16	6	6 ¹⁵ /16	7 ⁷ /8	8 ¹³ /16	93/4	10 ¹¹ /16	11 ⁵ /8	12 ⁹ /16	13 ¹ / ₂	14 ⁷ /16
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
¹ /4" Bars	15 ¹ /4	16 ³ /16	17 ¹ /8	18 ¹ /16	19	19 ¹⁵ / ₁₆	20 ⁷ /8	21 ¹³ /16	223/4	2311/16	24 ⁵ /8	25 ⁹ /16	26 ¹ / ₂	27 ⁷ /16	28 ³ /8
5/16" Bars	15 ⁵ /16	16 ¹ / ₄	17 ³ /16	18 ¹ /8	19 ¹ /16	20	2015/16	21 ⁷ /8	22 ¹³ /16	233/4	2411/16	25 ⁵ /8	26 ⁹ /16	27 ¹ / ₂	28 ⁷ /16
3/8" Bars	15 ³ /8	16 ⁵ /16	17 ¹ /4	18 ³ /16	19 ¹ /8	20 ¹ /16	21	21 ¹⁵ /16	22 ⁷ /8	23 ¹³ /16	24 ³ / ₄	25 ¹¹ /16	26 ⁵ /8	27 ⁹ /16	28 ¹ / ₂
No. of Bars	32	33	34	35	36	37	38	39							
1/4" Bars	29 ⁵ /16	30 ¹ / ₄	31 ³ /16	32 ¹ /8	33 ¹ /16	34	34 ¹⁵ /16	35 ⁷ /8							
5/16" Bars	29 ³ /8	30 ⁵ /16	31 ¹ / ₄	32 ³ /16	33 ¹ /8	34 ¹ / ₁₆	35	35 ¹⁵ /16							
3/8" Bars	29 ⁷ /16	30 ³ /8	31 ⁵ /16	32 ¹ / ₄	33 ³ /16	34 ¹ /8	35 ¹ /16	36							

HEAVY DUTY RIVETED STEEL

R SERIES

PRODUCT SPECIFICATION GUIDE

How to Specify:

The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for Construction Specifications Canada (CSC) and the

Technical Documents Committee of Construction Specifications Institute (CSI) for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating).

2. Heavy Duty Steel: ASTM A36 for hot rolled structural steel bars. ASTM A510 for carbon steel wire rods and coarse round wire.

B.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

84

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners.

B. The contractor shall submit the manufacturer's specifica-

tions, load tables, anchor details

and standard installation details.

Serrated Surface

PART 2: PRODUCT...

1. Grating: Heavy Duty Riveted Steel R Series by Ohio Gratings, Inc., or approved equal.
2. Bearing Bars: To be (size) rectangular bar spaced 2⁵/₁₆" between bearing bar faces. (Note: ³/₄" spacing may be specified at the discretion of the architect /engineer.)

3. Connecting Bars: Extending between bearing bars and riveted to bearing bars at 5" centers.
4. Surface: Plain (Note: a serrated connecting bar may be specified for maximum skid resistance.)
5. Loading: (Shall be specified by the architect/engineer in terms of uniform load/sq. ft., concentrated load/ft. of grating width, or by AASHTO wheel load designation. Loading, bearing bar size and span conditions must be coordinated.)
6. Finish: (Galvanized or manufacturer's standard black paint at the discretion of the architect/engineer.)
7. Fabrication and Tolerances: in accordance with the NAAMM Metal Bar Grating Manual.

PART 3: EXECUTION...

3.1 Installation

A. Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.

B. Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.

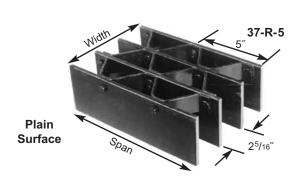
C. Cutting, Fitting and Placement.

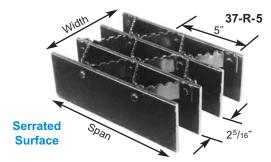
Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.

2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as

bearing bars.

3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.
4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.


5. Utilize standard panel widths wherever possible.


3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

Grating Profiles Available... R Series - Heavy Duty Riveted Steel *25/16" *PAN *Note that riveted grating marking indicates space between bearing bars

37 SPACE

Load Tables

Bar Size,	Wt.* Lbs.	Section P	roperties lx*, in⁴	Cross Bar Size,	Ма		<i>learSpan</i> , Inch tributed Load	es-
Inches	Sq. Ft.	Ft. Width	Ft. Width	Inches	1 Ton	3 Ton	5 Ton	H15/H20
$2^{1/2} \times {}^{1/4}$	17.02	1.220	1.524	1 ¹ /2 x ³ /16	23	14	15	17
2 ¹ / ₂ x ⁵ / ₁₆	19.03	1.488	1.860	1 ¹ /2 x ³ /16	28	17	17	20
2 ¹ / ₂ x ³ / ₈	20.84	1.744	2.180	1 ¹ /2 x ³ /16	33	19	19	22
3 x ¹ / ₄	19.27	1.756	2.634	1 ¹ /2 x ³ /16	33	19	19	22
3 x ⁵ /16	21.75	2.143	3.214	1 ¹ /2 x ³ /16	40	23	22	26
3 x ³ /8	23.96	2.512	3.767	1 ¹ /2 x ³ /16	47	27	25	29
$3^{1/2} \times {}^{1/4}$	21.52	2.390	4.183	1 ¹ /2 x ³ / ₁₆	44	25	24	28
$3^{1}/_{2} \times {}^{3}/_{8}$	27.09	3.419	5.982	1 ¹ /2 x ³ / ₁₆	64	35	33	37
4 x ¹ / ₄	23.78	3.122	6.244	1 ¹ /2 x ³ /16	57	32	30	34
4 x ⁵ /16	27.16	3.809	7.618	1 ¹ /2 x ³ /16	70	39	36	40
4 x ³ /8	30.21	4.465	8.930	1 ¹ /2 x ³ /16	83	45	41	46
4 ¹ / ₂ x ¹ / ₄	26.03	3.951	8.890	1 ¹ /2 x ³ /16	72	40	37	41
$4^{1}/_{2} \times {}^{3}/_{8}$	33.34	5.651	12.715	1 ¹ /2 x ³ /16	96	56	51	55
5 x ¹ / ₄	28.28	4.878	12.195	1 ¹ /2 x ³ /16	88	48	44	49
5 x ⁵ /16	32.58	5.952	14.880	1 ¹ /2 x ³ /16	96	59	53	58
5 x ³ /8	36.46	6.977	17.441	1 ¹ /2 x ³ / ₁₆	96	69	62	66

^{*}Based on approximately 4.5 bars/ft of grating width. Bearing bars 25/16" face-to-face.

Bar Size,				Maxi	mum Sat	e Conce	ntrated L	oad*, Lb	s Clear	Span			
Inches	1′- 0″	1′- 6″	2'- 0"	2'- 6"	3'- 0"	3′- 6″	4'- 0"	4'- 6"	5'- 0"	5′- 6″	6'- 0"	7′- 0″	8′- 0″
2 ¹ / ₂ x ¹ / ₄	8133	5422	4067	3253	2711	2324	2033	1807	1627	1479		% Open A	rea*
$2^{1}/_{2} \times {}^{5}/_{16}$	9920	6613	4960	3968	3307	2834	2480	2204	1984	1804	1/2	4″ ⁵ /16″	3/8"
$2^{1}/_{2} \times ^{3}/_{8}$	11627	7751	5813	4651	3876	3322	2907	2584	2325	2114	82	% 80%	78%
3 x ¹ / ₄	11707	7804	5853	4683	3902	3345	2927	2601	2341	2128	1951	Loads are the	eoretical and
3 x ⁵ /16	14287	9524	7143	5715	4762	4082	3572	3175	2857	2598	2381	are based on	
3 x ³ /8	16747	11164	8373	6699	5582	4785	4187	3721	3349	3045	2791	of 20,000 psi	
$3^{1}/_{2} \times ^{1}/_{4}$	15933	10622	7967	6373	5311	4552	3983	3541	3187	2897	2656	2276	
$3^{1}/_{2} \times {}^{3}/_{8}$	22793	15196	11397	9117	7598	6512	5698	5065	4559	4144	3799	3256	
$4 \times ^{1}/_{4}$	20813	13876	10407	8325	6938	5947	5203	4625	4163	3784	3469	2973	
4 x ⁵ /16	25393	16929	12697	10157	8464	7255	6348	5643	5079	4617	4232	3628	
$4 \times ^{3}/_{8}$	29767	19844	14883	11907	9922	8505	7442	6615	5953	5412	4961	4252	
$4^{1}/_{2} \times ^{1}/_{4}$	26340	17560	13170	10536	8780	7526	6585	5853	5268	4789	4390	3763	3293
$4^{1}/_{2} \times {}^{3}/_{8}$	37673	25116	18837	15069	12558	10764	9418	8372	7535	6850	6279	5382	4709
5 x ¹ / ₄	32520	21680	16260	13008	10840	9291	8130	7227	6504	5913	5420	4646	4065
5 x ⁵ /16	39680	26453	19840	15872	13227	11337	9920	8818	7936	7215	6613	5669	4960
5 x ³ /8	46513	31009	23257	18605	15504	13290	11628	10336	9303	8457	7752	6645	5814

^{*}Based on approximately 4.5 bars/ft of grating width. Bearing bars 25/16" face-to-face.

37-R-5 Panel Width Chart (in.)

Dimensions Are Out-to-Out of Bearing Bars**

No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
¹ /4" Bars	2 ¹³ /16	5 ³ /8	7 ¹⁵ /16	10 ¹ /2	13 ¹ /16	15 ⁵ /8	18 ³ /16	20 ³ / ₄	23 ⁵ /16	25 ⁷ /8	28 ⁷ /16	31	33 ⁹ /16	36 ¹ /8	38 ¹¹ / ₁₆
5/16" Bars	2 ¹⁵ /16	5 ⁹ /16	8 ³ /16	10 ¹³ /16	13 ⁷ /16	16 ¹ /16	18 ¹¹ /16	21 ⁵ /16	23 ¹⁵ /16	26 ⁹ /16	29 ³ /16	31 ¹³ /16	34 ⁷ /16	37 ¹ /16	39 ¹¹ / ₁₆
³/8″ Bars	3 ¹ /16	5 ³ /4	8 ⁷ /16	11 ¹ /8	13 ¹³ /16	16 ¹ / ₂	19 ³ /16	21 ⁷ /8	24 ⁹ /16	27 ¹ / ₄	29 ¹⁵ /16	32 ⁵ /8	35 ⁵ /16	38	40 ¹¹ /16

^{**}Add 3/s" for rivet heads.

Toll Free: 800-321-9800

Product Applications...

Wheels n' Heels® is the first grating product which satisfies both the vehicle loading requirements of AASHTO and the pedestrian comfort requirements of the Americans With Disabilities Act. Made from 3/8" or 1/4" thick ASTM A36 steel bar, this product will clear span up to 8' under H15 and H20

wheel loads. In addition, the close spacing of the bearing bars offers a pedestrian friendly 1/4" or 1/2" opening which allows easy access to wheel chair and high heel traffic. **Wheels n' Heels®** products can be provided in piece sizes up to 3' wide by 20' long. Slip resistant surfaces are also available. Check with our Sales Representatives for specific piece size limits on each type and size.

Central Library

 Minneapolis, MN

▲ Rochester Gas & Electric

- Rochester, NY

▲ Thea Foss Waterway
- Tacoma, WA

Short Span SERIES

PRODUCT SPECIFICATION GUIDE

8-WH-4 (1/4" open)

How to Specify:

The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for Construction Specifications Canada (CSC) and the Technical Documents Committee of Construction Specifications Institute (CSI)

for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown. specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating). 2. Heavy Duty Steel: ASTM A36 for hot rolled structural steel bars. ASTM A510 for carbon steel wire rods and coarse round wire.

B.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners. B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

Toll Free: 800-321-9800

ADA Surface

PART 2: PRODUCT...

1. Grating: Wheels n' Heels ® Heavy Duty Steel Grating by Ohio Gratings, Inc., or approved equal. 2. Bearing Bars: To be 1/4 " up through 3/8" x (size) ASTM A-36 bar spaced 1 /2 " center-to-center, 1/4 " open. (Note: 3 /4 " bar spacing, 1/2 " open may

be specified at the discretion of the architect /engineer.)

- 3. Čross Bars: To be 3 /8 " diameter carbon steel wire rod spaced 4" center-to-center and welded at right angles to bearing bars with one fillet at each bearing bar/cross bar intersection
- 4. Surface: Plain. (Note: A slip resistant surface may be specified at the discretion of the architect /engineer.)
- 5. Loading: AASHTO H15/H20 (Note: other wheel or forklift loading may be specified at the discretion of the architect/engineer.) 6. Finish: (mill finish, galvanized or manufac-
- turer's standard black paint at the discretion of the architect /engineer.)
- 7. Fabrication and Tolerances: in accordance with the NAAMM Metal Bar Grating Manual.

PART 3: EXECUTION...

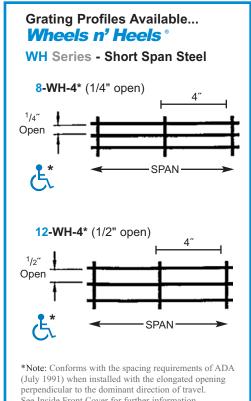
3.1 Installation

A. Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.

B. Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.

C. Cutting, Fitting and Placement.

1. Perform all cutting and fitting required for installation. Grating



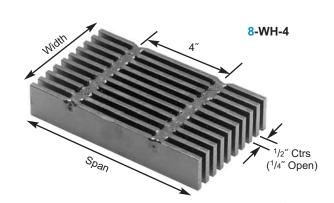
shall be placed such that cross bars align. 2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.

- 3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in
- 4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing. 5. Utilize standard panel widths wherever possible.

3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openinas.

See Inside Front Cover for further information.


87

8 SPACE

Note: 8-WH-4 is available in Plain Surface only. 2" cross bar centers are not available.

Banding Optional ►

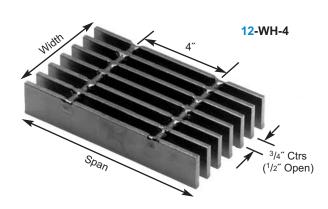
Bar Size,	Wt.* Lbs.	Section P	roperties	Cross Bar Size,		um Safe Cartially Dist			Maximum Manufactured
Inches	Sq. Ft.	Ft. Width	Ft. Width	Inches	1 Ton	3 Ton	5 Ton	H15/H20	Spans
1 x ¹ / ₄	21.53	1.000	0.500	³ /8 Dia.	11	9	11	14	24
1 ¹ / ₄ x ¹ / ₄	26.64	1.563	0.977	³ /8 Dia.	17	13	14	18	30
1 ¹ / ₂ x ¹ / ₄	31.73	2.250	1.688	³ /8 Dia.	23	17	18	22	36
1 ³ / ₄ x ¹ / ₄	36.84	3.063	2.680	³ /8 Dia.	31	22	23	28	42
2 x ¹ / ₄	41.93	4.000	4.000	³ /8 Dia.	40	27	29	34	48

^{*}Based on 24 bars/ft of grating width. Bearing bars $^{1/2}$ " c.c.

Bar Size,			Maximum	Safe Concentr	ated Load*, Lb	s ClearSpan		
Inches	0′- 6″	1′- 0″	1′- 6″	2′- 0″	2′- 6″	3′- 0″	4′- 0″	
1 x ¹ / ₄	13333	6667	4444	3333		_	neoretical and based	% Open Area*
1 ¹ / ₄ x ¹ / ₄	20840	10420	6947	5210	4168	on a unit stress of	45%	
1 ¹ / ₂ x ¹ / ₄	30000	15000	10000	7500	6000	5000		
1 ³ / ₄ x ¹ / ₄	40840	20420	13613	10210	8168	6807	5834	
2 x ¹ / ₄	53333	26667	17778	13333	10667	8889	7619	6667

^{*}Based on 24 bars/ft of grating width. Bearing bars 1/2" c.c.

8-WH-4 Panel	8-WH-4 Panel Width Chart (in.) Dimensions Are Out-to-Out of Bearing Bars														
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1/4" Bars	3/4	1 ¹ /4	1 ³ /4	21/4	2 ³ /4	31/4	33/4	4 ¹ / ₄	43/4	5 ¹ / ₄	5 ³ /4	6 ¹ / ₄	6 ³ / ₄	71/4	7 ³ /4
No. of Bars	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1/4" Bars	8 ¹ / ₄	83/4	9 ¹ / ₄	93/4	10 ¹ / ₄	10 ³ / ₄	11 ¹ / ₄	11 ³ / ₄	12 ¹ / ₄	12 ³ / ₄	13 ¹ / ₄	13 ³ / ₄	14 ¹ / ₄	14 ³ / ₄	15 ¹ / ₄
No. of Bars	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
1/4" Bars	15 ³ / ₄	16 ¹ / ₄	16 ³ / ₄	17 ¹ / ₄	17 ³ / ₄	18 ¹ / ₄	18 ³ / ₄	19 ¹ / ₄	19 ³ / ₄	20 ¹ / ₄	203/4	21 ¹ / ₄	21 ³ / ₄	22 ¹ / ₄	22 ³ / ₄
No. of Bars	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
1/4" Bars	23 ¹ / ₄	233/4	24 ¹ / ₄	24 ³ / ₄	25 ¹ / ₄	25 ³ / ₄	26 ¹ / ₄	26 ³ / ₄	27 ¹ / ₄	273/4	28 ¹ / ₄	28 ³ / ₄	29 ¹ / ₄	29 ³ / ₄	30 ¹ / ₄
No. of Bars	62	63	64	65	66	67	68	69	70	71	72				
1/4" Bars	303/4	31 ¹ / ₄	31 ³ / ₄	32 ¹ / ₄	32 ³ / ₄	33 ¹ / ₄	333/4	34 ¹ / ₄	343/4	35 ¹ / ₄	35 ³ / ₄				


Note: 2' maximum panel width suggested for ease of handling.

12 SPACE

Note: 12-WH-4 is available in Plain Surface only. 2" cross bar centers are not available.

Banding Optional ▶

Bar Size,	Wt.* Lbs.	Section P	roperties	Cross Bar Size,						
Inches	Sq. Ft.	Ft. Width	Ft. Width	Inches	1 Ton	3 Ton	5 Ton	H15/H20	Spans	
1 x ¹ / ₄	14.73	0.667	0.333	³ /8 Dia.	9	7	9	11	24	
1 ¹ / ₄ x ¹ / ₄	18.14	1.042	0.651	³ /8 Dia.	13	10	11	14	30	
1 ¹ / ₂ x ¹ / ₄	21.53	1.500	1.125	³ /8 Dia.	18	13	14	18	36	
1 ³ / ₄ x ¹ / ₄	24.94	2.042	1.786	³ /8 Dia.	23	16	18	21	42	
2 x ¹ / ₄	28.33	2.667	2.667	³ /8 Dia.	30	20	21	26	48	

^{*}Based on 16 bars/ft of grating width. Bearing bars 3/4" c.c.

Bar Size,			Maximum	Safe Concentra	ated Load*, Lb	s ClearSpan		
Inches	0′- 6″	1′- 0″	1′- 6″	2′- 0″	2′- 6″	3′- 0″	4′- 0″	
1 x ¹ / ₄	8893	4447	2964	2223		Loads given are		% Open Area*
1 ¹ / ₄ x ¹ / ₄	13893	6947	4631	3473	2779	based on a unit s	60%	
1 ¹ / ₂ x ¹ / ₄	20000	10000	6667	5000	4000	3333		
1 ³ / ₄ x ¹ / ₄	27227	13613	9076	6807	5445	4538 3890		
2 x ¹ / ₄	35560	17780	11853	8890	7112	5927	5080	4445

^{*}Based on 16 bars/ft of grating width. Bearing bars 3/4" c.c.

12-WH-4 Panel Width Chart (in.) Dimensions Are Out-to-Out of Bearing Bars No. of Bars 12 3 4 5 6 8 9 10 11 13 14 15 16 1/4" Bars $1^{3}/_{4}$ $2^{1/2}$ $3^{1}/_{4}$ 4 $4^{3}/4$ $5^{1/2}$ $6^{1/4}$ $7^{3}/4$ $8^{1/2}$ $9^{1/4}$ 10 $10^{3}/4$ $11^{1}/2$ No. of Bars 18 19 20 21 23 24 25 27 28 29 30 31 19³/₄ 1/4" Bars $12^{1/4}$ $13^{3}/4$ 14¹/₂ $16^{3}/4$ **17**¹/₂ $18^{1/4}$ 201/2 21¹/₄ 22 $22^{3}/4$ 13 $15^{1/4}$ 16 19 32 34 No. of Bars 33 35 36 37 38 39 40 41 42 43 44 45 46 1/4" Bars $23^{1/2}$ 24¹/₄ 25 $25^{3}/4$ $26^{1/2}$ $27^{1/4}$ 28 $28^{3}/4$ $29^{1/2}$ $30^{1/4}$ 31 $31^{3}/4$ $32^{1/2}$ $33^{1/4}$ 34 No. of Bars 47 48 49 ¹/₄" Bars 343/4 35¹/₂ $36^{1}/4$

Note: 2' maximum panel width suggested for ease of handling.

Long Span SERIES 1

PRODUCT SPECIFICATION GUIDE

How to Specify:

The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for Construction Specifications Canada (CSC) and the Technical Documents Committee of Construction Specifications 15-WH-4 (1/4" open) Institute (CSI) for specifications serving the con-struction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 1: GENERAL...

1.1 Scope

The contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to furnish and install grating, stair treads and frames.

1.2 Quality Assurance

A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating). 2. Heavy Duty Steel: ASTM A36 for hot rolled structural steel bars. ASTM A510 for carbon steel wire rods and coarse round wire.

B.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners.

B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

1. Grating: Wheels n'
Heels® Heavy Duty
Steel Grating by Ohio
Gratings, Inc., or
approved equal.
2. Bearing Bars: To be
1/4" up through 3/8" x
(size) ASTM A-36 bars
spaced 1- 3/4" or 2-5/8" cc
and 3/4" x 3/16" filler bars
aced 7/16" cc – 1/4" open. (Note:

spaced 7/16" cc – 1/4" open. (Note: bars spaced 2-1/16" or 2-3/4" cc and 3/4" x 3/16" filler bars spaced 11/16" cc – 1/2" open may be specified at discretion of the architect /engineer.)

3. Čross Bars: To be 3/4" x 1/4" bar spaced 4" center-to-center and welded at right angles with one fillet at each bearing bar/cross bar intersection. No change to the following:
4. Surface: Plain. (Note: A serrated or a slip resistant surface may be specified at the dis-

cretion of the architect/engineer.)
5. Loading: AASHTO H15/H20 (Note: other wheel or forklift loading may be specified at the discretion of the architect/engineer.)
6. Finish: (Mill finish – as fabricated, galvanized or manufacturer's standard black paint at the discretion of the architect/engineer.
7. Fabrication and Tolerances: In accordance with the NAAMM Heavy Duty Metal Bar

PART 3: EXECUTION...

3.1 Installation

Grating Manual.

A. Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.

B. Install grating in accordance with shop drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.

C. Cutting, Fitting and Placement.

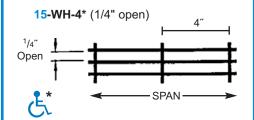
Perform all cutting and fitting required for installation. Grating shall be placed such that cross bars align.

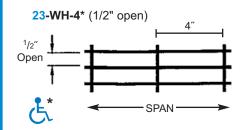
2. Wherever grating is pierced by

pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.

3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.

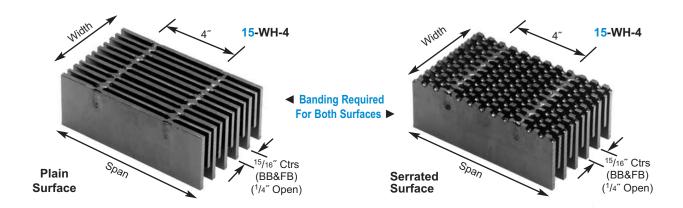
4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.


5. Utilize standard panel widths wherever possible.


3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

WH Series - Long Span Steel

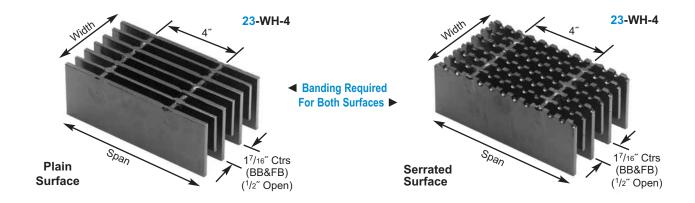


*Note: Conforms with the spacing requirements of ADA (July 1991) when installed with the elongated opening perpendicular to the dominant direction of travel. See Inside Front Cover for further information.

15 SPACE - SERIES 1

Bar Size,	Wt.* Lbs.		Section Properties Sx*. in³ Ix*. in⁴			Inches-	Maximum Manufactured		
Inches	Sq. Ft.	Sx*, in³ Ft. Width	Ft. Width	Bar Size, Inches	1 Ton	artially Dis	5 Ton	H15/H20	Spans
2 ¹ / ₂ x ¹ / ₄	44.81	3.333	4.167	¹ / ₄ x 1	40	26	26	31	54
3 x ¹ / ₄	50.25	4.800	7.200	¹ / ₄ x 1	56	36	36	42	60
3 ¹ / ₂ x ¹ / ₄	55.69	6.533	11.433	¹ / ₄ x 1	66	47	47	54	66
4 x ¹ / ₄	61.13	8.533	17.067	¹ / ₄ x 1	72	61	59	69	72
4 ¹ / ₂ x ¹ / ₄	66.57	10.800	24.300	¹ / ₄ x 1	84	76	74	84	84
5 x ¹ / ₄	72.01	13.333	33.333	¹ / ₄ x 1	96	93	90	96	96

^{*}Based on 12.8 bars/ft of grating width. Bearing bars ¹⁵/₁₆" c.c. Note: When serrated grating is specified, choose the next larger size.


Note:15-WH-4 must be trim banded. 2" cross bar centers are not available.

Bar Size,			ı	Maximum :	Safe Conce	entrated Lo	oad*, Lbs	ClearSpa	า		
Inches	2'- 0"	2′- 6″	3′- 0″	3′- 6″	4'- 0"	4'- 6"	5′- 0″	5′- 6″	6′- 0″	7′- 0″	8′- 0″
2 ¹ / ₂ x ¹ / ₄	11110	8888	7407	6349	5555	4938		Loads give	n are theoretica	al and based or	a unit
3 x ¹ / ₄	16000	12800	10667	9143	8000	7111	6400	stress of 20	% Ope	n Area*	
3 ¹ / ₂ x ¹ / ₄	21777	17421	14518	12444	10888	9679	8711	7919		_ ·	1%
4 x ¹ / ₄	28443	22755	18962	16253	14222	12641	11377	10343	9481]	
4 ¹ / ₂ x ¹ / ₄	36000	28800	24000	20571	18000	16000	14400	13091	12000	10286	
5 x ¹ / ₄	44443	35555	29629	25396	22222	19753	17777	16161	14814	12698	11111

^{*}Based on 12.8 bars/ft of grating width. Bearing bars 15/16" c.c. Note: When serrated grating is specified, choose the next larger size.

No. of Bars 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1/4" Bars 13/16 21/8 31/16 4 415/16 57/8 613/16 73/4 811/16 95/8 109/16 111/2 127/16 133/8	16
1/4" Bars 13/16 21/8 31/16 4 415/16 57/8 613/16 73/4 811/16 95/8 109/16 111/2 127/16 133/8	16
	14 ⁵ /16
No. of Bars 17 18 19 20 21 22 23 24 25 26	
1/4" Bars 151/4 163/16 171/8 181/16 19 1915/16 207/8 2113/16 223/4 2311/16	

23 SPACE - SERIES 1

Bar Size,	Wt.* Lbs.		Section Properties Sx*, in³ Ix*, in⁴		Maximu Pa		Maximum Manufactured		
Inches	Sq. Ft.	Ft. Width	Ft. Width	Bar Size, Inches	1 Ton	3 Ton	5 Ton	H15/H20	Spans
2 ¹ / ₂ x ¹ / ₄	29.67	2.174	2.717	¹ / ₄ x 1	31	19	20	24	54
3 x ¹ / ₄	33.21	3.131	4.696	¹ /4 x 1	43	27	26	31	60
3 ¹ / ₂ x ¹ / ₄	36.76	4.261	7.457	¹ /4 x 1	59	35	34	40	66
4 x ¹ / ₄	40.31	5.565	11.131	¹ /4 x 1	72	45	43	50	72
4 ¹ / ₂ x ¹ / ₄	43.86	7.044	15.848	¹ /4 x 1	84	56	53	61	84
5 x ¹ / ₄	47.41	8.696	21.740	¹ /4 x 1	96	69	65	73	96

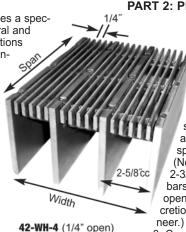
^{*}Based on 8.348 bars/ft of grating width. Bearing bars $17/\iota_0''$ c.c. **Note:** When serrated grating is specified, choose the next larger size.

Note: 23-WH-4 must be trim banded. 2" cross bar centers are not available.

Bar Size,			ı	Maximum \$	Safe Conce	entrated Lo	oad*, Lbs	ClearSpar	1		
Inches	2'- 0"	2′- 6″	3′- 0″	3′- 6″	4'- 0"	4'- 6"	5′- 0″	5′- 6″	6′- 0″	7′- 0″	8′- 0″
2 ¹ / ₂ x ¹ / ₄	7247	5797	4831	4141	3623	3221		Loads gives	are theoretica	al and based	
3 x ¹ / ₄	10437	8349	6958	5964	5218	4639	4175	on a unit str	ress of 20,000 j	psi.	
3 ¹ / ₂ x ¹ / ₄	14203	11363	9469	8116	7102	6313	5681	5165			en Area*
4 x ¹ / ₄	18550	14840	12367	10600	9275	8244	7420	6745	6183	6	66%
4 ¹ / ₂ x ¹ / ₄	23480	18784	15653	13417	11740	10436	9392	8538	7827	6709	
5 x ¹ / ₄	28987	23189	19324	16564	14493	12883	11595	10541	9662	8282	7247

^{*}Based on 8.348 bars/ft of grating width. Bearing bars 17/16'' c.c. **Note**: When serrated grating is specified, choose the next larger size.

23-WH-4 Par	nel Wi	dth C	hart (i	n.)			Dimensions Are Out-to-Out of Bearing Bars								
No. of Bars	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
¹ /4" Bars	1 ¹¹ / ₁₆	31/8	4 ⁹ /16	6	7 ⁷ /16	8 ⁷ /8	10 ⁵ /16	11 ³ /4	13 ³ /16	14 ⁵ /8	16 ¹ /16	17 ¹ /2	18 ¹⁵ /16	203/8	21 ¹³ /16
No. of Bars	17	18	19	20	21	22	23	24	25	26					
1/4" Bars	23 ¹ / ₄	24 ¹¹ /16	26 ¹ /8	27 ⁹ /16	29	30 ⁷ /16	31 ⁷ /8	33 ⁵ /16	34 ³ / ₄	36 ³ /16					



Long Span SERIES 2

PRODUCT SPECIFICATION GUIDE

How to Specify:

The information below provides a specification format for architectural and engineering specification sections that, when applied, will be consistent with the Three-Part Section Format for Construction Specifications Canada (CSC) and the Technical Documents Committee of Construction Specifications Institute (CSI) for specifications serving the construction industry. These specifications are intended for use as a guide spec for architects and engineers, and may need to be altered or modified to fit the specific conditions of the application in question.

PART 2: PRODUCT...

1. Grating: Wheels n' Heels® Heavy Duty Steel Grating by Ohio Gratings, Inc., or approved equal. 2. Bearing Bars: To be 1/4" up through 3/8" x (size) ASTM A-36 bars spaced 1- 3/4" or 2-5/8" cc and 3/4" x 3/16" filler bars spaced 7/16" cc - 1/4" open. (Note: bars spaced 2-1/16" or 2-3/4" cc and 3/4" x 3/16" filler bars spaced 11/16" cc - 1/2" open may be specified at discretion of the architect /engi-

3. Cross Bars: To be 3/4" x 1/4" bar spaced 4" center-to-center and

welded at right angles with one fillet at each bearing bar/cross bar intersection. No change to the following:

4. Surface: Plain. (Note: A serrated or a slip resistant surface may be specified at the discretion of the architect/engineer.)

5. Loading: AASHTO H15/H20 (Note: other wheel or forklift loading may be specified at the discretion of the architect/engineer.)
6. Finish: (Mill finish – as fabricated, galvanized or manufacturer's standard black paint at the discretion of the architect/engineer.
7. Fabrication and Tolerances: In accordance with the NAAMM Heavy Duty Metal Bar

grating, stair treads and frames.

PART 1: GENERAL...

1.1 Scope

1.2 Quality Assurance
A.1. Comply with applicable provisions and recommendations of the following: NAAMM Metal Bar Grating Manual designated ANSI/NAAMM MBG 531 (Aluminum and Light Duty Steel and Stainless Steel Grating) and MBG 532 (Heavy Duty Steel Grating).
2. Heavy Duty Steel: ASTM A36 for hot rolled structural steel bars. ASTM A510 for carbon steel wire rods and coarse round wire.

The contractor shall provide all labor, materi-

als, equipment and incidentals as shown,

specified and required to furnish and install

B.1. Take field measurements prior to preparation of shop drawings and fabrication where required, to ensure proper fitting of the work.

1.3 Submittals

A. The contractor shall submit for approval shop drawings for the fabrication and erection of all work. Include plans, elevations, and details of sections and connections. Show type and location of all fasteners.

B. The contractor shall submit the manufacturer's specifications, load tables, anchor details and standard installation details.

3.1 Installation

Grating Manual.

A. Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment. Any inconsistencies between contract drawings and supporting structure deemed detrimental to grating placement shall be reported in writing to the architect or owner's agent prior to grating placement.

B. Install grating in accordance with shop

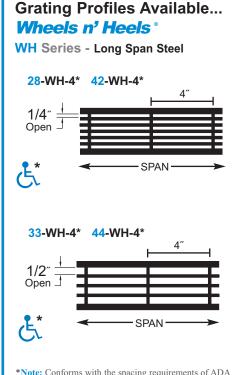
drawings and standard installation clearances as recommended by the NAAMM Metal Bar Grating Manual.

C. Cutting, Fitting and Placement.

1. Perform all cutting and fitting required for installation. Grating shall be placed such that cross

bars align

2. Wherever grating is pierced by pipes, ducts and structural members, cut openings neatly and accurately to size and weld a rectangular band bar of the same height and material as bearing bars.


3. Cutouts for circular obstructions are to be at least 2" larger in diameter than the obstruction. Cutouts for all piping 4" or less shall be made in the field.

4. All rectangular cutouts are to be made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.

5. Utilize standard panel widths wherever possible.

3.2 Grating Attachment

Use anchorage devices (saddle clips) (grating clamps) (plank clips) (plank lugs) (countersunk lands) (Z clips) or (anchor blocks) and fasteners to secure grating to supporting members or prepared openings.

*Note: Conforms with the spacing requirements of ADA (July 1991) when installed with the elongated opening perpendicular to the dominant direction of travel. See Inside Front Cover for further information.

Long Span SERIES 2

HEAVY DUTY STEEL 28-WH-4 - 50.2% Open Area with 1/4" Max Open Between Bearing or Filler Bars

Main Bearing	Wt.		roperties	Cross	Ma	ximum Safe C		nes-
Bar Size,	Lbs.	Sx, in ³	lx, in⁴	Bar Size,	4. Т		ributed Load	1100/1145
Inches	Sq. Ft.	Ft. Width	Ft. Width	Inches	1 Ton	3 Ton	5 Ton	H20/H15
3 x ¹ / ₄	29.90	2.571	3.857	$^{3}/_{4} \times ^{1}/_{4}$	40	24	24	28
3 ¹ / ₂ x ¹ / ₄	32.82	3.500	6.125	$^{3}/_{4} \times ^{1}/_{4}$	53	32	31	35
4 x ¹ / ₄	35.75	4.571	9.143	³ /4 x ¹ /4	69	40	38	44
4 ¹ / ₂ x ¹ / ₄	38.67	5.786	13.018	$^{3}/_{4} \times ^{1}/_{4}$	86	50	47	53
5 x ¹ / ₄	41.59	7.143	17.857	$^{3}/_{4} \times ^{1}/_{4}$	96	61	57	64
6 x ¹ / ₄	47.43	10.286	30.857	$^{3}/_{4} \times ^{1}/_{4}$	96	86	79	87
7 x ¹ / ₄	53.27	14.000	49.000	³ /4 x ¹ /4	96	96	96	96

Main Bearing			Maxim	um Safe C	oncentrate	d Load, LI	os/Ft Widt	h - at <i>Clea</i>	arSpan		
Bar Size, Inches	2' - 0"	2' - 6"	3' - 0"	3' - 6"	4' - 0"	4' - 6"	5' - 0"	5' - 6"	6' - 0"	7' - 0"	8' - 0"
3 x ¹ / ₄	8,571	6,857	5,714	4,898	4,286	3,810	3,429	3,117	2,857	2,449	2,143
3 ¹ / ₂ x ¹ / ₄	11,667	9,333	7,778	6,667	5,833	5,185	4,667	4,242	3,889	3,333	2,917
$4 \times ^{1}/_{4}$	15,238	12,190	10,159	8,707	7,619	6,772	6,095	5,541	5,079	4,354	3,810
$4^{1}/_{2} \times ^{1}/_{4}$	19,286	15,429	12,857	11,020	9,643	8,571	7,714	7,013	6,429	5,510	4,821
5 x ¹ / ₄	23,810	19,048	15,873	13,605	11,905	10,582	9,524	8,658	7,937	6,803	5,952
6 x ¹ / ₄	34,286	27,429	22,857	19,592	17,143	15,238	13,714	12,468	11,429	9,796	8,571
7 x ¹ / ₄	46,667	37,333	31,111	26,667	23,333	20,741	18,667	16,970	15,556	13,333	11,667

Panel Width C	hart (in.)	Dimensions Are Out-To-Out of Bearing Bars									
No. of Bars	2	3	4	5	6	7	8	9	10	11	12
¹ / ₄ " Bars	2	3.75	5.5	7.25	9	10.75	12.5	14.25	16	17.75	19.5
No. of Bars	13	14	15	16	17	18	19	20	21		
1/4" Bars	21.25	23	24.75	26.5	28.25	30	31.75	33.5	35.25		

HEAVY DUTY STEEL 42-WH-4 - 51.3% Open Area with 1/4" Max Open Between Bearing or Filler Bars

Main Bearing Bar Size.	Wt. Lbs.		Properties	Cross Bar Size,	Maximum Safe ClearSpan, Inches- Partially Distributed Load			
Inches	Sq. Ft.	Sx, in3 Ft. Width	lx, in⁴ Ft. Width	Inches				
3 x ¹ / ₄	25.16	1.714	2.571	³ /4 x ¹ /4	33	20	19	22
3 ¹ / ₂ x ¹ / ₄	27.10	2.333	4.083	³ / ₄ x ¹ / ₄	44	25	24	28
4 x ¹ / ₄	29.05	3.048	6.095	³ / ₄ x ¹ / ₄	57	32	30	34
$4^{1}/_{2} \times {}^{1}/_{4}$	31.00	3.857	8.679	³ / ₄ x ¹ / ₄	71	40	36	41
5 x ¹ / ₄	32.95	4.762	11.905	³ / ₄ x ¹ / ₄	88	48	44	49
6 x ¹ / ₄	36.84	6.857	20.571	³ /4 x ¹ /4	125	68	61	65
7 x ¹ / ₄	40.74	9.333	32.667	³ / ₄ x ¹ / ₄	170	91	81	85

Main Bearing	Maximum Safe Concentrated Load, Lbs/Ft Width - at ClearSpan										
Bar Size, Inches	2' - 0"	2' - 6"	3' - 0"	3' - 6"	4' - 0"	4' - 6"	5' - 0"	5' - 6"	6' - 0"	7' - 0"	8' - 0"
3 x ¹ / ₄	5,714	4,571	3,810	3,265	2,857	2,540	2,286	2,078	1,905	1,633	1,429
$3^{1}/_{2} \times ^{1}/_{4}$	7,778	6,222	5,185	4,444	3,889	3,457	3,111	2,828	2,593	2,222	1,944
$4 \times ^{1}/_{4}$	10,159	8,127	6,772	5,805	5,079	4,515	4,063	3,694	3,386	2,902	2,540
$4^{1}/_{2} \times ^{1}/_{4}$	12,857	10,286	8,571	7,347	6,429	5,714	5,143	4,675	4,286	3,673	3,214
5 x ¹ / ₄	15,873	12,698	10,582	9,070	7,937	7,055	6,349	5,772	5,291	4,535	3,968
6 x ¹ / ₄	22,857	18,286	15,238	13,061	11,429	10,159	9,143	8,312	7,619	6,531	5,714
7 x ¹ / ₄	31.111	24.889	20.741	17.778	15.556	13.827	12.444	11.313	10.370	8.889	7.778

Panel Width Chart (in.) Dimensions Are Out-To-Out of Bearing Bars No. of Bars 3 4 5 9 10 11 12 2 6 8 ¹/₄" Bars 2.875 10.75 5.5 8.125 13.375 16 18.625 21.25 23.875 26.5 29.125 No. of Bars 14 15 13 ¹/₄" Bars 31.75 34.375 37

Long Span SERIES 2

HEAVY DUTY STEEL 33-WH-4 65.3% Open Area with 1/2" Max Open Between Bearing or Filler Bars

Main Bearing	Wt.	Section P	roperties	Cross	Maximum Safe ClearSpan, Inch			ies-
Bar Size,	Lbs.	Sx, in³	lx, in⁴	Bar Size,		Partially Distributed Load		
Inches	Sq. Ft.	Ft. Width	Ft. Width	Inches	1 Ton	3 Ton	5 Ton	H20/H15
3 x ¹ / ₄	22.97	2.182	3.273	³ /4 x ¹ /4	37	22	22	25
3 ¹ / ₂ x ¹ / ₄	25.44	2.970	5.197	$^{3}/_{4} \times ^{1}/_{4}$	49	29	28	32
4 x ¹ / ₄	27.92	3.879	7.758	³ /4 x ¹ /4	63	36	35	39
4 ¹ / ₂ x ¹ / ₄	30.40	4.909	11.045	$^{3}/_{4} \times ^{1}/_{4}$	80	45	42	48
5 x ¹ / ₄	32.88	6.061	15.152	$^{3}/_{4} \times ^{1}/_{4}$	96	55	51	57
6 x ¹ / ₄	37.84	8.727	26.182	$^{3}/_{4} \times ^{1}/_{4}$	96	78	71	77
7 x ¹ / ₄	42.79	11.879	41.576	$^{3}/_{4} \times ^{1}/_{4}$	96	96	94	96

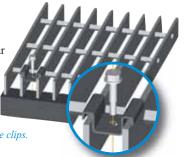
Main Bearing	Maximum Safe Concentrated Load, Lbs/Ft Width - at ClearSpan										
Bar Size, Inches	2' - 0"	2' - 6"	3' - 0"	3' - 6"	4' - 0"	4' - 6"	5' - 0"	5' - 6"	6' - 0"	7' - 0"	8' - 0"
3 x ¹ / ₄	7,273	5,818	4,848	4,156	3,636	3,232	2,909	2,645	2,242	2,078	1,818
$3^{1}/_{2} \times ^{1}/_{4}$	9,899	7,919	6,599	5,657	4,949	4,400	3,960	3,600	3,300	2,828	2,475
$4 \times ^{1}/_{4}$	12,929	10,343	8,620	7,388	6,465	5,746	5,172	4,702	4,310	3,694	3,232
$4^{1}/2 \times {}^{1}/4$	16,364	13,091	10,909	9,351	8,182	7,273	6,545	5,950	5,455	4,675	4,091
5 x ¹ / ₄	20,202	16,162	13,468	11,544	10,101	8,979	9,524	7,346	6,734	5,772	5,051
6 x ¹ / ₄	29,091	23,273	19,394	16,623	14,545	12,929	13,714	10,579	9,697	8,312	7,273
7 x ¹ /4	39,596	31,677	26,397	22,626	19,798	17,598	18,667	14,399	13,199	11,313	9,899

Panel Width C	hart (in.)	(in.) Dimensions Are Out-To-Out of Bearing Bars									
No. of Bars	2	3	4	5	6	7	8	9	10	11	12
¹ / ₄ " Bars	2.3125	4.375	6.4375	8.5	10.5625	12.625	14.6875	16.75	18.8125	20.875	22.9375
No. of Bars	13	14	15	16	17	18	19				
1/4" Bare	25	27.0625	20 125	31 1875	33 25	35 3125	37 375				

HEAVY DUTY STEEL 44-WH-466.0% Open Area with 1/2" Max Open Between Bearing or Filler Bars

Main Bearing	Wt.	Section P	roperties	Cross	Maximum Safe <i>ClearSpan</i> , Inches-					
Bar Size,	Lbs.	Sx, in ³	lx, in⁴	Bar Size,		Partially Dist	tributed Load			
Inches	Sq. Ft.	Ft. Width	Ft. Width	Inches	1 Ton	3 Ton	5 Ton	H20/H15		
3 x ¹ / ₄	19.94	1.636	2.455	³ / ₄ x ¹ / ₄	32	19	19	22		
3 ¹ / ₂ x ¹ / ₄	21.80	2.227	3.898	$^{3}/_{4} \times ^{1}/_{4}$	43	25	24	27		
4 x ¹ / ₄	23.66	2.909	5.818	$^{3}/_{4} \times ^{1}/_{4}$	56	31	29	33		
$4^{1}/_{2} \times ^{1}/_{4}$	25.52	3.682	8.284	$^{3}/_{4} \times ^{1}/_{4}$	70	39	36	40		
5 x ¹ / ₄	27.38	4.545	11.364	³ /4 x ¹ /4	86	47	43	47		
6 x ¹ / ₄	31.10	6.545	19.636	$^{3}/_{4} \times ^{1}/_{4}$	96	66	59	63		
7 x ¹ / ₄	34.82	8.909	31.182	³ / ₄ x ¹ / ₄	96	89	78	83		

Main Bearing		Maximum Safe Concentrated Load, Lbs/Ft Width - at ClearSpan									
Bar Size, Inches	2' - 0"	2' - 6"	3' - 0"	3' - 6"	4' - 0"	4' - 6"	5' - 0"	5' - 6"	6' - 0"	7' - 0"	8' - 0"
3 x ¹ / ₄	5,455	4,364	3,636	3,117	2,727	2,424	2,182	1,983	1,818	1,558	1,364
$3^{1}/_{2} \times ^{1}/_{4}$	7,424	5,939	4,949	4,242	3,712	3,300	2,970	2,700	2,475	2,121	1,856
4 x ¹ / ₄	9,697	7,758	6,465	5,541	4,848	4,310	3,879	3,526	3,232	2,771	2,424
$4^{1}/2 \times {}^{1}/4$	12,273	9,818	8,182	7,013	6,136	5,455	4,909	4,463	4,091	3,506	3,068
5 x ¹ / ₄	15,152	12,121	10,101	8,658	7,576	6,734	6,061	5,510	5,051	4,329	3,788
6 x ¹ / ₄	21,818	17,455	14,545	12,468	10,909	9,697	8,727	7,934	7,273	6,234	5,455
7 x ¹ / ₄	29,697	23,758	19,798	16,970	14,848	13,199	11,879	10,799	9,899	8,485	7,424


	Panel Width	Chart (in.)	Dimensions Are Out-To-Out of Bearing Bars									
	No. of Bars	2	3	4	5	6	7	8	9	10	11	12
ı	¹ / ₄ " Bars	3	5.75	8.5	11.25	14	16.75	19.5	22.25	25	27.75	30.5
	No. of Bars	13	14									
	¹ / ₄ " Bars	33.25	36									

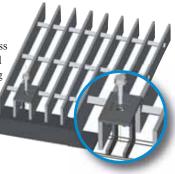
ANCHORING DEVICES

Saddle Clip

A special bent-clip type fastener for removable bar grating panels, available in aluminum, stainless steel & galvanized steel.

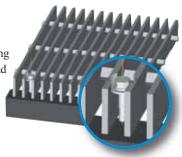
Note: Cross bars may need to be snipped in the field to facilitate placement of saddle clips.

Channel Frame

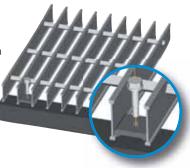

A special C-channel frame fastener system used in conjunction with welded anchor blocks between bearing bars. The fabricated frame is held in place by tek screws that are attached to the anchor blocks. Recommended spacing is between 12" and 16" O.C."

Grating Clamp

A special friction fastener available in aluminum, stainless steel and galvanized steel used in conjunction with bar grating & embedded grating frames.


Note: Cross bars may need to be snipped in the field to facilitate placement of grating clamps.

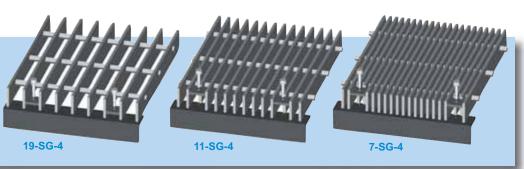
Countersunk Land


For close-mesh aluminum grating (7/16" or 11/16" bearing bar centers), a countersunk land may be drilled by the grating manufacturer for use with a 1/4" diameter TEK screw.

Note: Available for aluminum grating and steel.

Lug

A plank lug inserted then tack welded between flanges, can serve as an ideal anchor block for plank grating.


Z-Clip

The most versatile clip anchor available is the Z-Clip. They are especially helpful in holding down riveted grating. Z-Clips are manufactured from stainless steel and are available in 1" (1" and 1-1/4" grating), 1-1/2" (1-1/2" and 1-3/4" grating), and 2" (2", 2-1/4" and 2-1/2" grating) with a pre-punched hole to accept a 1/4" bolt or TEK screw.

Anchor Block

Anchor blocks of 1/4" or 3/16" thick aluminum or steel may be shop welded by the grating manufacturer and used to fasten permanent or removable grating panels. Anchor blocks are recessed thus offering a trip-free surface.

Note: For ADA compliant spacings, the lug will typically be installed at the top. **Tack welding** of grating in the field (by others) is also a positive method for anchoring all permanently installed grating.

STANDARD PRACTICES

The following information has been excerpted from the NAAMM Metal Bar Grating Manual and represents those practices which are generally accepted to be standard in the metal bar grating industry.

Quotations...

Quotations shall be offered on the basis of unit price per square foot (in rectangular sections) and per tread. Plans submitted for bidding shall be fully dimensioned and shall provide the complete product description, including bar spacing, span direction, cutout locations, anchorage devices, and finish required.

Extras...

A partial list of those items not included in unit price quotations, and which shall be treated as unit price extras, is as follows: straight and circular cutting and banding, toe plates, support plates or angles, hinges, lift handles, locking devices, anchors, hole drilling or punching, grinding of welds, sandblasting, deburring and special bundling.

Drawings & Specifications...

The Buyer is expected to furnish a set of construction drawings and specifications of current issue showing the layout of supports and floor openings correctly dimensioned, together with the sizes and types of grating and treads required. The Seller shall submit to the Buyer three (3) prints or one reproducible paper copy of detailed drawings in outline form for the latter's approval or desired changes. The Buyer shall return one copy marked with approval or desired changes. Should changes be required which involve work not called for in the original plans and specifications, the Seller shall have the right to charge extra for the engineering work required to make such changes. After all necessary corrections and/or changes are made, the drawings shall be resubmitted to the Buyer for his final approval. The Seller shall not proceed with any shop work until drawings are finally approved.

Installation Drawings...

Toll Free: 800-321-9800

If requested, the Seller shall furnish to the Buyer, a maximum of four sets of prints or one reproducible paper copy of all installation drawings.

Quantity Measurements...

Quantity measurements for gratings ordered to specific dimensions without drawings, shall be based on span times width of each panel, with no deduction made for cutouts. Final calculated grating quantities supplied from drawings shall be on the basis of gross area measured center-to-center of supports, or back to back of supporting angles or channels, or overall dimensions of grating, whichever is larger, with no deduction for clearances. Measurement of cuts shall be on the basis of a minimum of one lineal foot per cut panel. Any cut in excess of one lineal foot shall be measured to the next higher lineal foot. Measurement of banding, toe plates and nosings shall be on the same basis as that of cuts.

Changes in Scope...

If at any time during the course of the work, the Buyer orders changes made which require materials and/or labor not called for in the original bidding plans, the cost of making such changes shall be paid by the Buyer at a price to be agreed upon.

Field Work...

The Seller shall not be responsible for taking actual measurements of construction work in the field, nor for erection or installation of the grating.

Backcharges...

Upon discovery of unsatisfactory material, the Buyer shall immediately notify the Seller, who will initiate an investigation into the complaint. The Seller shall be given the opportunity to inspect the material PRIOR TO ANY CORRECTIVE WORK BEING DONE. The Seller is responsible for providing grating in accordance with approved drawings and specifications. The Seller is not responsible for field changes, drawing changes not received and approved by Seller prior to grating fabrication, improper fabrication and/or erection of supporting members. If the investigation and inspection confirm errors in grating fabrication, the Seller agrees to repair and/or replace defective material at no additional charge to Buyer.

Claims...

All claims are handled independently of all initial orders or invoices.

SPECIFICATION INFORMATION

Ohio Gratings is a member in good standing with the National Association of Architectural Metal Manufacturers.

All aluminum and steel grating manufactured and fabricated by Ohio Gratings is done so in accordance with the NAAMM Metal Bar Grating Manual, current edition, which is an approved standard of the American National Standards Institute

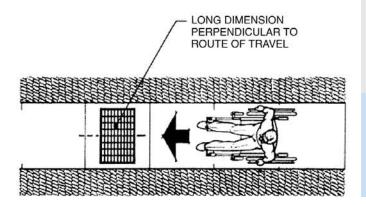
and designated as ANSI/NAAMM MBG 531 (steel, stainless steel, and aluminum grating and stair treads) and ANSI/NAAMM MBG 532 (structural carbon steel and stainless steel).

The following table outlines the material, Federal, Military and finishing specifications routinely used by the grating industry. In the absence of customer furnished specifications, the following will apply:

S P E	C I F	I C	A T	I O N
PRODUCT	MATERIAL	FEDERAL	MILITARY	FINISH
Aluminum Flush Top, Aluminum Rectangular Bar, Aluminum I-Bar, Lite Bar, Aluminum Dove Tail, Aluminum Riveted	Alloy 6063-T6 per ASTM B-221 and QQ -A-200/9. Alloy 6061-T6 per ASTM B-221 and QQ -A-200/8 (by inquiry).	ANSI /NAAMM MBG 531	MIL-G-18014 (Ships)	1. Mill Finish 2. Clear Anodized AA-A31 (30 min.) or AA-A41 (60 min.) (by inquiry). 3. Other (by inquiry).
Aluminum Plank, Aluminum Grating Frames	1. Alloy 6063-T6 per ASTM B-221 and QQ -A-200/9.		MIL-G-18015 (Ships)	1. Mill Finish 2. Other (by inquiry).
Heavy Duty Welded Steel, Heavy Duty Riveted Steel	1. ASTM A-36 ('1/4", 5/16", 5/16", 1/2" carbon steel). 2. Other (by inquiry).	AASHTO (American Association of State Highway and Transpor- tation Officials) Stand- ard Specification For Highway Bridges ANSI/NAAMM MBG 532		One coat manufacturer's standard black paint. This is not a permanent finish system, but is intended to protect the grating in transit only because it will chip. (see page 37) Galvanizing per ASTM A-123/A-385.
Light Duty Welded Carbon Steel, Light Duty Dove Tail Carbon Steel, Light Duty Swaged Carbon Steel, Light Duty Swaged Stainless Steel, Light Duty Riveted Carbon Steel	1. ASTM A-1011 (¹/s″, ³/₁₅″, ¹/₄″ carbon steel). 2. ASTM A-36 (¹/₄″ carbon steel) by inquiry. 3. Type 304 per ASTM A-666 (¹/₅″ and ³/₁₅″ stainless steel). 4. Other (by inquiry).	ANSI /NAAMM MBG 531	MIL-G-18014 (Ships)	One coat manufacturer's standard black paint. This is not a permanent finish system, but is intended to protect the grating in transit only because it will chip.(see page 37) Galvanizing per ASTM A-123/A-385.
Light Duty Carbon Steel All Aluminum Products	1. Alloy 6063-T6 per ASTM B-221 and QQ -A-200/9.	ANSI /NAAMM MBG 531	NA	TGIC Polyester Systems, a permanent durable finish that resists impact, humidity and salt spray which increases material longevity.

^{*}Effective March 10, 1989, the Naval Facilities Engineering Command adopted the NAAMM Metal Bar Grating Manual for Department of Defense use, replacing Federal Spec RR-G-661 as the specification for carbon steel and aluminum metal bar grating flooring, except for naval vessels.

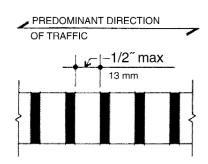
A Word About Finishing Grating...


Since the aluminum oxide coating of aluminum bar is relatively inert chemically, and is self-repairing when damaged in the presence of oxygen, aluminum bar grating possesses a high degree of corrosion resistance in the mill finished condition, and is typically specified without additional coatings or treatment.

ADA GUIDELINES

ADA Accessibility Guidelines...

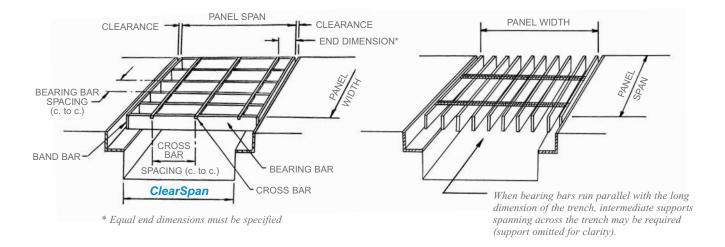
On July 26, 1991 the Architectural and Transportation Barriers Compliance Board (Access Board) published the *Americans with Disabilities Act Accessibility Guidelines* (ADAAG). The ADA establishes accessibility requirements for new construction and alterations of State and local government facilities, and places of public accommodation and commercial facilities. As updated in the November 16, 1999 ADAAG Notice of Proposed Rule making, section 302.3 states that "openings in floor or ground surfaces shall allow passage of a sphere not more than ½ inch (13 mm) diameter. Elongated openings shall be placed so that the long dimension is perpendicular to the dominant direction of travel."



Ohio Gratings manufactures Aluminum, Light Duty Carbon and Stainless Steel and Heavy Duty Carbon Steel grating products which conform with the spacing requirements of the ADA Accessibility Guidelines for Buildings and Facilities. The specification and use of this family of *GRATER ACCESS®* products will ensure that your project is both pedestrian friendly and vehicle safe. Since these Accessibility Guidelines are subject to change, please contact the factory for up-to-date information regarding the use of grating in ADA applications.

Note: Bar grating has historically been an industrial foot walk product, intended for use in catwalks, platforms, stainways, and roadways (Heavy Duty only), and is designed to be installed in a fastened condition. This grating is standardly subject to manufacturing and fabrication tolerances as dictated by the ANSI/NAAMM Metal Bar Grating Manual. While these tolerances and the various finishes available are suitable for most industrial applications, they may not be appropriate for some commercial or architectural uses. Please contact the factory for further specification assistance.

ADA Note: As of the publication date of this catalog, Ohio Gratings' products having a 1/2" maximum opening conform with the Americans with Disabilities Act Accessibility Guidelines (ADAAG), issued in July 1991, and the ADAAG Notice of Proposed Rule making issued on November 16, 1999, for grating when installed with the elongated opening perpendicular to the dominant direction of travel.



Toll Free: 800-321-9800

NOMENCLATURE & VOCABULARY

Methods of name identification used in this catalog...

This catalog uses a form of the NAAMM alpha-numeric designation for bar spacing and manufacturing identification. The first number signifies center-to-center bearing bar spacing in 1/16ths of an inch*. A letter designates method of manufacture. The last number details center-to-center cross bar spacing in whole inches (usually 4" or 2"), or rivet spacing (usually 3-1/2", 5" or 7").

Methods of manufacturing and their letter designations used in this catalog:

SG –Swaged Rectangular BarW –Welded SteelSGF –Swaged FlushDT –Dove Tail

SGI –Swaged I-Bar
 ADT –Dove Tail (Aluminum)
 SGLi –Swaged Lite Bar
 R –Riveted (Steel)
 SGSS –Swaged Stainless Steel

AR –Riveted Aluminum WH –Wheels n' Heels®

LG -Louver

For Example:

19-W-4 Bearing Bars 19/16" (or 1-3/16") c.c.

Welded Steel Construction

- Cross Bars 4" c.c.

15-SGI-2 Bearing Bars 15/16" c.c.

- Swaged I-Bar

- Cross Bars 2" c.c.

Other Bearing Bar spacings commonly used throughout the industry are designated this way:

38-W-4 (or 2)	Bearing Bars 38/16" c.c.(2-3/8" c.c.)
30-W-4 (or 2)	Bearing Bars 30/16" c.c.(1-7/8" c.c.)
22-W-4 (or 2)	Bearing Bars 22/16" c.c.(1-3/8" c.c.)
11-SG-4 (or 2)	Bearing Bars 11/16" c.c.
7-SG-4 (or 2)	Bearing Bars 7/16" c.c.
18-R-7 (or 3-1/2)	Bearing Bars 18/16" c.c. face-to-face (1-1/8")
37-R-5	Bearing Bars 37/16" c.c. face-to-face (2-5/16"
12-R-7 (or 3-1/2)	Bearing Bars 12/16" c.c. face-to-face (3/4")*

PRESSURE LOCKED GRATING

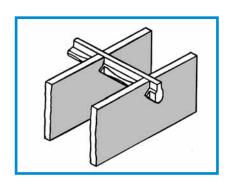
Pressure Locking...

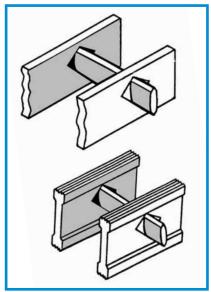
The most common method of manufacturing aluminum bar grating is through a process known as pressure locking. Pressure locked grating as defined by the NAAMM Metal Bar Grating Manual is grating in which "bearing bars are locked in position by cross bar deformation instead of riveting or welding." Ohio Gratings manufactures both traditional, dove tail pressure locked grating, and

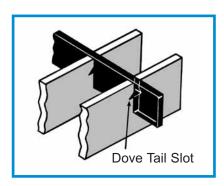
Aluminum Flush Top Grating...

Aluminum Flush Top grating from Ohio Gratings combines the sure lock reliability of swage-locked grating with the cosmetic appeal and added walking surface of traditional pressure locked grating. Best of all, by taking advantage of the swage-lock manufacturing process, Aluminum Flush Top grating offers a cost savings over traditional pressure locked grating while at the same time allowing banding to be an option rather than a requirement. Field cutting is also possible.

Aluminum Rectangular or I-Bar Grating...


These two grating designs utilize a process by which 1/4" or 5/16" square cross bars are assembled through punched, diamond shaped holes in the bearing bars, and then secured by swaging to prevent turning, twisting, or loosening. Available with either rectangular or I-shaped bearing bar sections, this manufacturing process offers:

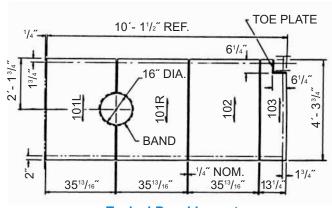

- 1) The economy of cutting individual pieces from panels.
- 2) Enables field alteration of grating panels.
- 3) Allows banding as an option rather than as a requirement.


Dove Tail Pressure Locked Grating...

This first generation pressure locked design involves pressing the cross bars into the main bars under hydraulic pressure, forcing 1/16" of cross bar material laterally into "dove tail" slots in the main bars. Each piece is then generally end banded to provide panel stability, and outside bearing bars and cross bars are usually tack welded to ensure integrity. Pieces may be made individually to size, or may be shop cut from panels. Field alteration of this style of grating is typically more difficult than field fabrication of swaged grating, and is generally discouraged.

swaged grating. Both manufacturing processes are used to manufacture, not only aluminum grating, but also carbon steel grating (see pages 81 and 87). Additionally, the swaging process is used to produce stainless steel grating (see page 93). Each method of manufacture is further described below.

Toll Free: 800-321-9800


CUSTOM FABRICATION

All types of fabrication typically associated with the grating industry are performed by experienced and expert craftsmen at Ohio Gratings. Services available include straight and circular cutting and banding, fabrication of radially cut grating panels, toe plate attachment, grating with checker plate, heavy duty grating

10'-0" 3'-0" W8 x 13 14" DIA. N8 x 13 11.5

C8 x 11.5

Typical Structural Layout

Typical Panel Layout

Shown above is an example of a customer supplied structural drawing (top sketch) and the corresponding grating layout drawing as furnished by Ohio Gratings (bottom sketch).

with cross bars top and bottom, serrated heavy duty bearing bars and cross bars, egg-crate construction, vault grating, grating with hinges and locks, and heavy duty grating with spacer bars to form an extremely close mesh (see Wheels n' Heels ® Heavy Duty Steel Grating, pages 61 and 65).

Drawings and Templates

The majority of fabrication performed by Ohio Gratings is done in accordance with grating drawings prepared by the Engineering Department. These grating erection drawings are generally produced from the structural drawings, or grating outline drawings, as supplied by the customer.

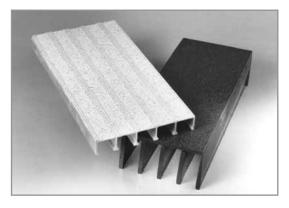
Each grating panel is tagged with a mark number which corresponds to a mark number on the drawing. This marking system allows grating panels to be identified during the fabrication process, and, when used in conjunction with the grating drawing, facilitates the correct placement of grating panels during erection.

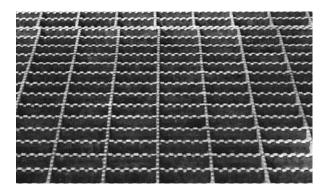
While some grating companies work from floor layouts, Ohio Gratings has chosen to employ personnel thoroughly versed in the trigonometry of grating design, and shop employees who are experts at blueprint reading. This combination has been found to be the most efficient approach to drawing preparation, customer drawing approval, and shop fabrication.

Occasionally, extremely intricate grating areas require that fabrication be accomplished from a template used to supplement the grating drawing. Templates supplied by the customer are usually made from cardboard or plastic. In addition to grating configuration, templates must indicate top and bottom sides, and whether or not they represent the size of the opening or the size of the grating. Grating can be fabricated from templates for a nominal charge, over and above the standard fabrication charge.

> Please contact the factory regarding the electronic transfer of drawings via the Internet.

FIBERGLASS FABRICATION

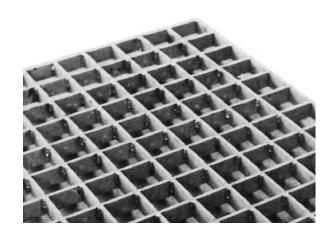

Ohio Gratings stocks and fabricates most major types of fiberglass grating. Molded fiberglass, both square mesh and rectangular mesh, as well as pultruded grating is available in panel form, or cut-to-length and fabricated per customer specifications. Ohio Gratings also has the ability to supply FRP platforms, ladders and handrail. For more information regarding OGI's FRP fabrication capabilities, please contact the factory.


Grating/Plate Combinations

For those flooring areas requiring the solid surface of plate, and the structural strength and removability of grating, assemblies combining checkered or smooth plate with aluminum, light duty steel, or heavy duty steel can be furnished. Unless otherwise specified, 3/16" welds, one inch long on 12" centers in each direction are used to join grating and plate. Due to the rolled in stresses inherent in plate, and the subsequent stress release and warping which can accompany galvanizing, the following limitations apply to steel grating/checker plate assemblies:

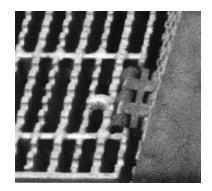
- 1. Light Duty Steel Grating and Plate combinations will be furnished in the mill finished or painted black conditions only. Deviation from this policy will be at customer risk, i.e., flatness tolerances will not be guaranteed for galvanized material.
- 2. In addition to the painted or mill finished condition, Heavy Duty Grating/Plate assemblies having bearing bars 2" x 3/8" or larger can be provided with a galvanized finish.
- 3. All Steel Grating/Plate combinations will be installed with the plate on the BOTTOM of the grating. When installed with the plate facing up, the cross bars will be on the bottom of the grating. This will apply to steel only (not aluminum).
- 4. All galvanized Steel Grating/Plate will be fabricated with a 1/2" diameter handling/drain hole in one corner of the plate.

Shown above is a steel grating/solid plate assembly coated with a slip resistant, anti-skid surface. For applications requiring the light weight or corrosion resistance of an aluminum grating / checkerplate combination, unpunched plank (shown above with a slip resistant surface) offers an economical alternative.



Serrated Rectangular Bearing Bars and Cross Bars

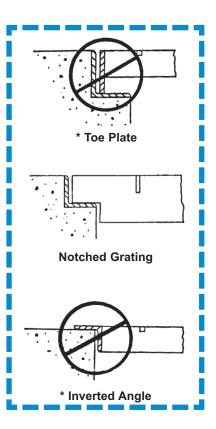
In order to achieve maximum skid resistance for wheel traffic, Ohio Gratings manufactures heavy duty welded steel grating with serrated rectangular bearing bars and cross bars. The rectangular cross bar design is especially suited to this application, providing a skid free surface, while at the same time offering lateral stability which is superior to the round cross rod design most common to the industry. Serrated bearing bars range from 1/4" thru 1/2" thick, while serrated cross bars are available in 1/4" and 3/8" thickness.


Egg-Crate Construction

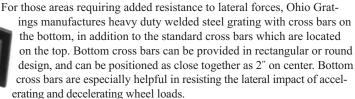
Occasionally requirements call for the cross bars to be larger than standard, or in some cases, equal in size to the bearing bars. This condition may necessitate the notching of both the bearing bar and the cross bar resulting in a type of construction known as "egg-crate". Unless otherwise specified, each internal intersection is welded at two of the four corners, while the outside intersection is welded at one of the two corners. Depth of weld can vary depending upon the depth of the grating and the opening between bars. In general, egg-crate construction is limited to bars from 2" to 6" in depth and ranging from 1/4" up to 1" in thickness, with a minimum clear opening ranging from 2" to 4", depending upon bar size. The maximum panel size is typically 50 - 60 SF per piece.

Toll Free: 800-321-9800

CUSTOM FABRICATION

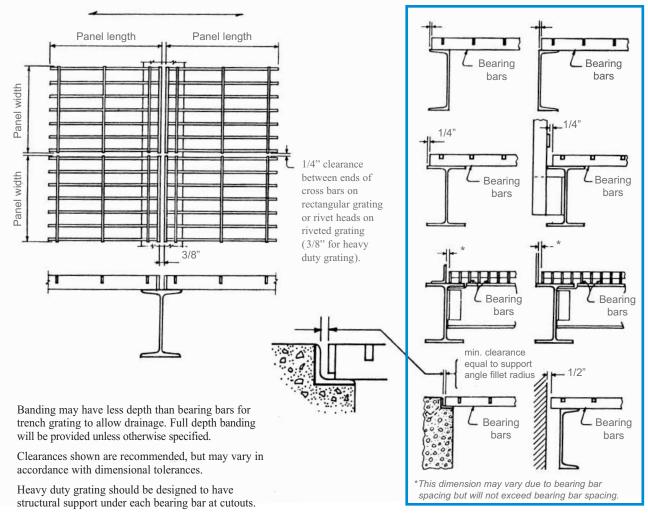

Hinges, Locks and Lift Handles

Since grating is typically used to provide multiple level flooring, quite often, grating hatches are needed to facilitate access from one level to another. Ohio Gratings has years of experience in fabricating grating panels with hinges and lift handles, and with locking devices for security purposes. Numerous standard details have been developed, and are on file for customer use. Since these details are standard, they represent the most cost effective methods of fabrication, both from a labor, and from a material availability point of view.


Notching/Welding


Notching is somewhat common in the industry, however, not recommended under certain conditions. Please consult factory for recommendations.

* Grating which is welded to an inverted angle or toe plate, and supported by the weld rather than by a bearing surface, is not recommended and should never be specified.



Slip Resistant Surface

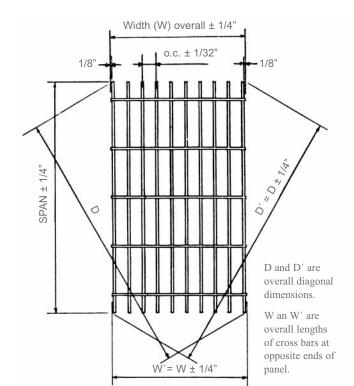
All Ohio Gratings' products are available with a slip resistant, metallic coating for maximum traction. This coating may be in the form of the plasma stream deposition of aluminum-on-aluminum or steel-on-steel, or may be in the form of a CNC laser deposition process. For the most suitable coating for your application, please contact the factory.

STANDARD INSTALLATION CLEARANCES

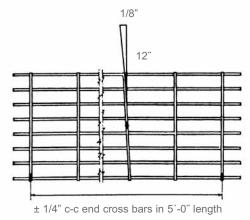
Cutouts for circular obstructions are recommended to be at least 2" larger in diameter than the obstruction. It is further recommended that cutouts for all piping 4" or less be made in the field.

As shown in the drawing below, all rectangular cutouts are made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.

specified cutout – 4" x 6" actual cutout – 53/4" x 6" (bearing bar spacing – 1-3/16")

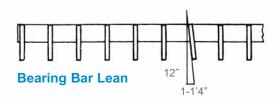

General Recommendations for Grating Installation

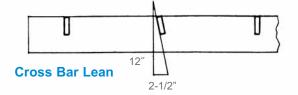
- · Gratings must be installed with cross bars on top side.
- Notching of bearing bars at supports to maintain proper elevation is generally not recommended. If notching is required for installation, manufacturer should be consulted.
- Metal should always be used for all grating supports.
- A minimum of 1" bearing shall be provided for Aluminum and Light Duty Steel Grating. For Heavy Duty Steel Grating, 1" minimum bearing shall be provided for bearing bar depths up to 2¹/₄", and 2" minimum bearing shall be provided for depths of 2¹/₂" and over. This bearing surface does not include the support angle fillet radius noted above.


Toll Free: 800-321-9800 105

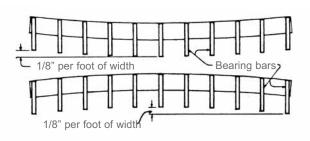
GRATING TOLERANCES

Light Duty Steel Grating - Aluminum Grating

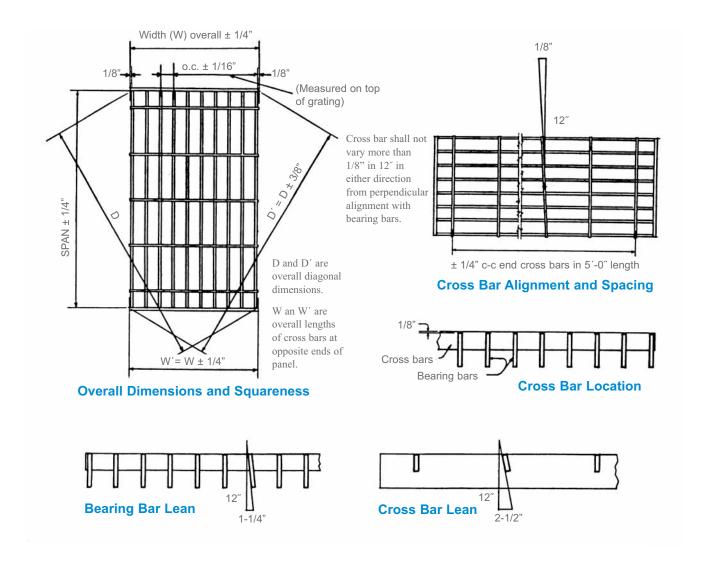

Cross bar shall not vary more than 1/8" in 12" in either direction from perpendicular alignment with bearing bars.

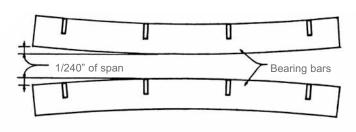


Cross Bar Alignment and Spacing

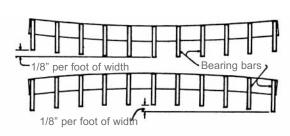

Overall Dimensions and Squareness

Longitudinal Bow

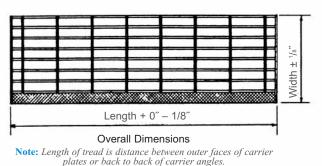


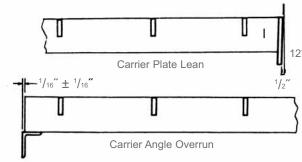

Transverse Bow (Before fastening to supports)

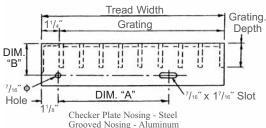
GRATING TOLERANCES


Heavy Duty Steel Grating

Longitudinal Bow

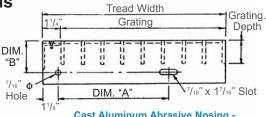

(Before fastening to supports)



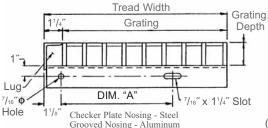

Transverse Bow

(Before fastening to supports)

STAIR TREAD TOLERANCES

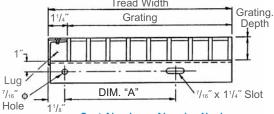


Grooved Nosing - Aluminum Slip-Not Nosing - Steel & Aluminum



Carrier Plate Steel - 2-1/2" x 3/16", or 3" x 3/16" depending upon DIM. B

Aluminum - 3" x 3/16"


Cast Aluminum Abrasive Nosing -Steel & Aluminum Tread Width

Grooved Nosing - Aluminum Slip-Not Nosing - Steel & Aluminum

2" x 1-1/2" x 1/4" Angle (used for 11/16", 7/16" BB ctrs.)

Cast Aluminum Abrasive Nosing -Steel & Aluminum

LiteBar

Max Tread Length Chart

	19SGli	15SGli	11SGli	7SGIi
Bar Size Inches	Max Length Inches	Max Length Inches	Max Length Inches	Max Length Inches
3/4"	18	20	22	27
1"	24	28	29	34
1-1/4"	31	34	36	43
1-1/2"	37	40	43	53
2"	52	57	62	66
2-1/2"	66	66	66	82

Standard Tread Widths and End Plate Dimensions

Note: Refer to drawings above for A and B dimensions.

Number	Width	End Plate Dimensions					
of	SGF, SG, ADT,	SGI	R, AR	Plank	Dim.	Dim. B	
Bearing Bars	W, DT, SGCS, SGSS Series	Series	Series	Series	A A	1″ 1¹/₄″	1 ¹ / ₂ " 1 ³ / ₄ "
5	6³/ ₁₆	6 ¹ / ₄	6 ¹¹ / ₁₆	6³/8	21/2"	13/4"	21/4"
6	73/8	77/16	8	71/4	41/2"	13/4"	21/4"
7	89/16	85/8	95/16	83/4	41/2"	1³/₄"	21/4"
8	93/4	9 13/16	10 ⁵ /8	915/16	7″	1³/₄″	21/4"
9	1015/16	11	11 ¹⁵ / ₁₆	11¹/8	7″	13/4"	21/4"
10	12 ¹ / ₈	12³/ ₁₆	13¹/₄	12³/ ₈	7″	13/4"	21/4"

Note: DIM. B = $2^{1/4}$ " for ALL aluminum treads.

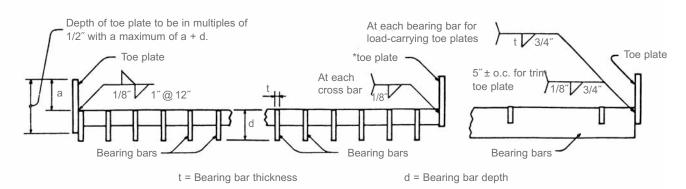
*Table of widths based on 3/16 thick bearing bars (1/4" I-Bar) and standard 13/16" c.c. bar spacing (11/8" face-to-face for riveted grating).

Suggested Bearing Bar Sizes and Maximum Tread Lengths*

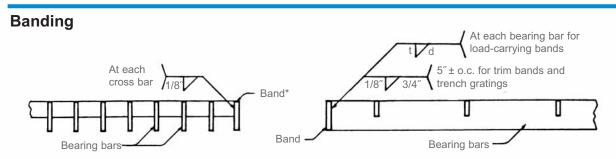
			<u> </u>							
			ALUMINUM	TREADS				STEEL TR	EADS	
1	SGF, S	SG, ADT Ser	ies	AR Series	SGI and P	lank Series	W, DT, SC	GCS, SGSS	Series	R Series
1	Bar Size,	Max. Trea	d Length	Max. Tread	Bar Size	Max. Tread	Bar Size	Max. Trea	d Length	Max. Tread
	Inches	Plain	Serrated	Length	Inches	Length	Inches	Plain	Serrated	Length
ı	1 x ³ / ₁₆	2'- 4"	2'- 2"	2′- 5″	1	2′- 6″	3/4 X 3/16	2'- 4"	1′- 11″	2'-7"
	1 ¹ / ₄ x ³ / ₁₆	2′- 10″	2′- 7″	3′- 0″	11/4	3′- 0″	1 x ³ / ₁₆	3′- 5″	2′- 10″	3′- 10″
	1 ¹ / ₂ x ³ / ₁₆	3′- 6″	3'- 2"	3′- 8″	11/2	3′- 8″	1 ¹ / ₄ x ³ / ₁₆	4'- 8"	4'- 2"	4'- 11"
1	13/4 x 3/16	4'- 3"	3′- 10″	4′- 6″	13/4	4'- 5"	1 ¹ / ₂ x ³ / ₁₆	5′- 6″	5′- 3″	5′- 6″

^{*}Maximum tread length based on 300 lb. concentrated load on front 5" of tread at center of tread length and max. D = 1/240" of length. Lengths based on 3/16" thick bearing bars (1/4" I-Bar) and standard 1-3/16" c.c. bar spacing (1-1/8" face-to-face for riveted grating).

Note: Since a serrated connecting bar does not reduce the strength of the AR and R Series, plain and serrated lengths are the same.



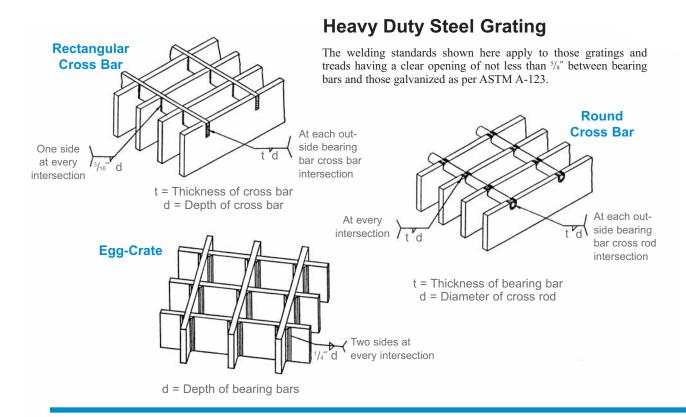
WELDING STANDARDS


Light Duty Steel Grating - Aluminum Grating

The welding standards shown here apply to those gratings and treads having a clear opening of not less than 5/8" between bearing bars and those galvanized as per ASTM A-123.

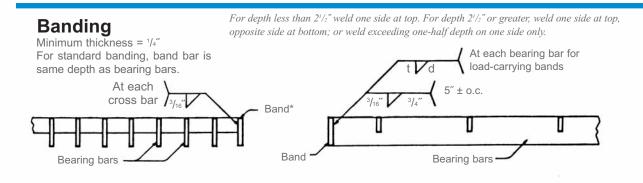
Toe Plates

^{*}Example shown occurs at a diagonal or circular cutout.


^{*}Example shown occurs at a diagonal or circular cutout. Since the outside bearing bar becomes the edge bar of a panel width, side bands are never specified. Full depth banding will be provided unless otherwise specified.

Stair Treads 1/8" 1/8" 1" at mid-span* 1/8" 1" at mid-span*

Weld 1st, 2nd and last bearing bars as shown. On treads over 9-3/4" wide, weld end of center bar also. On treads over 9-3/4" wide, weld end of center bar also.


^{*}Treads spanning 4' or more shall have two welds, located at the third points of span.

WELDING STANDARDS

Toe Plates Depth of toe plate to be in multiples of 1/2" with a maximum of a + d. *Toe plate At each cross bar 3/16" 1" @ 12" Bearing bars Bearing bars Toe plate Bearing bars Bearing bars

t = Bearing bar thickness

d = Bearing bar depth

^{*}Example shown occurs at a diagonal or circular cutout.

- **ANCHOR** A device by which grating is attached to its supports.
- **BAND** A flat bar welded to the end of a grating panel, or along the line of a cutout, and extending neither above nor below the bearing bars.

Load-Carrying Band: A band used in a cutout to transfer the load from unsupported bearing bars in the cutout to the supported bearing bars.

Trim Band: A band which carries no load, but is used chiefly to improve appearance.

- **BEARING BARS** Load-carrying bars made from steel strip or slit sheet or from rolled or extruded aluminum and extending in the direction of the grating span.
- **BEARING BAR CENTERS** The distance center to center of the bearing bars.
- **CARRIERS** Flats or angles which are welded to the grating panel and nosing of a stair tread and are bolted to a stair stringer to support the tread.
- CLEAR OPENING The distance between faces of bearing bars in a rectangular grating, or between a bent connecting bar and a bearing bar in a riveted grating.
- CROSS BARS The connecting bars, made from steel strip, slit sheet, or rolled bars, or from rolled or extruded aluminum, which extend across the bearing bars, usually perpendicular to them. They may be bent into a corrugated or sinuous pattern and, where they intersect the bearing bars, are welded, forged or mechanically locked to them.
- CROSS BAR CENTERS The distance center to center of the cross bars.
- **CURVED CUT** A cutout following a curved pattern.
- **CUTOUT** An area of grating removed to clear an obstruction or to permit pipes, ducts, columns, etc. to pass through the grating.
- **ELECTRO FORGED** A process combining hydraulic pressure and heat fusion to forge bearing bars and cross bars into a panel grid.
- **FINISH** The coating, usually paint or galvanizing which is applied to the grating.
- **FLUSH TOP GRATING** A type of pressure-locked grating in which the cross bars and bearing bars are in the same plane relative to the top surface of the grating.
- GRATING An open grid assembly of metal bars, in which the bearing bars, running in one direction, are spaced by rigid attachment to cross bars running perpendicular to them or by bent connecting bars extending between them.
- **HINGED PANELS** Grating panels which are hinged to their supports or to other grating parts.

- **I-BAR** An extruded aluminum bearing bar having a cross sectional shape resembling the letter "I".
- **LENGTH** The dimension of a grating panel measured parallel to the bearing bars. Also referred to as span.
- **LOAD-CARRYING BAND** see Band.
- **NOSING** A special L-section member serving as the front or leading edge of a stair tread, or of grating at the head of a stair.
- PRESSURE-LOCKED GRATING Pressure-locked means bearing bars are locked in position by cross bar deformation instead of riveting or welding. Several proven methods are:
 - Expansion of an extruded or drawn tubular cross bar
 - Extruded cross bar deformed or swaged between bearing bars
 - Press assembly of rectangular cross bars into slotted bearing bars.
- **RADIALLY CUT GRATING** Rectangular grating which is cut into panels shaped as annular segments, for use in circular or annular areas.
- **RETICULINE BAR** A sinuously bent connecting bar extending between two adjacent bearing bars, alternately contacting and being riveted to each.
- **RIVET CENTERS** The distance center to center of rivets along one bearing bar.
- **RIVETED GRATING** Grating composed of straight bearing bars and bent connecting bars, which are joined, at their contact points, by riveting.
- **SERRATED GRATING** Grating which has the top surfaces of the bearing bars or cross bars, or both, notched.
- **SPAN OF GRATING** The distance between points of grating support, or the direction of this dimension. Also referred to as length.
- **STRAIGHT CUT** That portion of the cut edge or cutout of a grating which follows a straight line.
- **SWAGING** A method of altering the cross-sectional shape of a metal bar by pressure applied through dies.
- **TOE PLATE** A flat bar attached against the outer edge of a grating or rear edge of a tread, and projecting above the top surface of grating or tread to form a lip or curb.
- TREAD A panel of grating having carriers and nosing attached by welding, and designed specifically to serve as a stair tread.
- **WELDED GRATING** Grating in which the bearing bars and cross bars are joined at all of their intersections by either a resistance weld or conventional hand welding.
- WIDTH The overall dimension of a grating panel, measured perpendicular to the bearing bars, and in the same direction as the cross bars.

Toll Free: 800-321-9800

ORDERING INFORMATION

GRATING...

1. Description:

a. Aluminum:

- Aluminum Flush Top SGF Series
- Aluminum Rectangular Bar SG Series
- Aluminum I-Bar SGI Series
- Aluminum Lite Bar
- Aluminum Dove Tail ADT Series
- Aluminum Riveted AR Series
- Aluminum Plank Series

b. Heavy Duty Steel:

- Heavy Duty Welded Steel W Series
- Heavy Duty Welded Steel WH Series
- Heavy Duty Riveted Steel R Series

c. Light Duty Steel:

- Welded Carbon Steel W Series
- Dove Tail Carbon Steel DT Series
- Swaged Carbon Steel SGCS Series
- Swaged Stainless Steel SGSS Series
- Riveted Carbon Steel R Series

2. Size and Type: (Bar grating)

- a. Bearing bar size
- b. Bearing bar spacing, center-to-center (face-to-face for riveted grating)
- c. Cross bar or rivet spacing, center-to-center

3. Surface:

- a. Plain
- b. Serrated
- c. Striated (I-Bar)
- d. Slip Resistant Surface

4. Size & Punch/Pattern: (Aluminum Plank grating)

- a. Plank size and type
- b. Unpunched
- c. Rectangular Punched
 - Upset Pattern (OGI)
 - Upset Pattern (WACO)
 - Plain Pattern
- d. Square Punched
 - Upset Pattern
 - Plain Pattern
- e. Round Punched
 - 13/16" Diameter In-Line Pattern
 - 1" Diameter Staggered Pattern
- f. ADA Diagonal Pattern

5. A Drawing Showing: (if layout is complicated)

Note: Grating should

always be held down

means. (see page 96)

by some positive

- a. Area to be covered
- b. Span (direction of bearing bars)
- c. Method of support
- d. All critical dimensions
- e. Banding or toe plate

6. Type of Anchorage:

- a. Grating clamp
- b. Plank clip
- c. Saddle clip
- d. Anchor block
- e. Countersunk land (aluminum only)
- f. Tack weld
- g. Z clip
- h. Plank lug

7. Finish:

- a. Aluminum:
 - Mill Finish
 - Cleaned & Etched
 - A-31 ¹/₂ hour Clear Anodizing
 - A-41 1 hour Clear Anodizing

b. Carbon Steel:

- Mill Finish
- Manufacturer's Standard Black Paint
- Galvanized

c. Stainless Steel:

- Mill Finish
- Sandblast (used to help minimize the discoloration caused by welding Heavy Duty Stainless Steel grating)

STAIR TREADS...

- 1. Description: See Grating, Item 1
- 2. Size and Type: (Bar grating) See Grating, Item 2
- 3. Surface: See Grating, Item 3

4. Size and Punch/Pattern: (Aluminum Plank grating):

- a. See Grating, Item 4
- b. Type "F"

5. Type of Nosing:

- a. Checker plate standard for carbon steel treads
- b. Cast aluminum an abrasive nosing available on aluminum or carbon steel
- c. Grooved an extruded aluminum nosing standard on aluminum treads
- d. Slip-Not a special nose for aluminum or carbon steel treads by request
- e. Stainless Steel

6. Dimensions:

- a. Width of tread, including nosing
- b. Span (length of bearing bars)
- c. End plate dimensions "A" and "B" (see page 105)

7. Number of Treads:

8. Finish: See Grating, Item 7

ALUMINUM GRATING FRAMES...

1. Frame Size: (corresponds with grating size)

2. Description:

- a. Stock lengths
- A detailed drawing or accurate measurements for fabricated frames
- 3. Supplementary anchor straps & spacing, if required:

4. Finish:

- a. Mill Finish
- b. Bituminous Paint
- 5. Nail Holes and Location:, if required

WHEN GRATING ABSOLUTELY HAS TO BE THERE!

Featuring the following products for shipment in 1 to 3 days!

- Carbon Steel Panels
- Stainless Steel Panels (3 days)
- Aluminum Panels
- Treads
- Light Fabrication

ALUMINUM & CARBON STEEL PANELS

- Widths 2' and 3'
- Lengths 6', 8', 10', 12', 20' and 24' (See back for details)

ALUMINUM & LIGHT DUTY CARBON STEEL TREADS

- Aluminum and custom steel sizes with quantities up to 25
- Stock Steel Treads with 9 sizes available and quantities up to 50 (See back for stock sizes)

CUT PIECES & LIGHT FABRICATION

- Cut pieces up to 900 sq. ft.
- · Lengths as required
- Fabrication: straight, skew and circle cuts, nosings and trim band

FINISHES AVAILABLE

- Carbon Steel Mill, Shop Black & Galvanized (Add 2 additional days for galvanizing)
- · Aluminum Mill
- Stainless Steel Mill or sandblasted (additional lead time required)

#304 SWAGED STAINLESS STEEL PANELS - (WELDED)

- · Widths 2' and 3'
- Lengths 8', 10' and 12
- Heights 1", 1-1/4" and 1-1/2"
- Smooth surface
- Other configurations available

NOW AVAILABLE IN 3 DAYS!

KWIK SHIP INFORMATION

AVAILABLE PRODUCTS

- 19W4 Light Duty Carbon Steel (smooth or serrated surface, 3/16" thick) 1", 1-1/4", 1-1/2", 1-3/4", 2"
- 19SGI4 Swaged Aluminum I-Bar...... 1", 1-1/4", 1-1/2", 1-3/4", 2"

STOCK TREADS - (LIGHT DUTY STEEL)

BEARING BAR	<u>WIDTH</u>	<u>LENGTH</u>	SPACING
1" x 3/16"	9-3/4"	2'-6"	19W4
1" x 3/16"	12-1/8"	2'-6"	19W4
1" x 3/16"	10-15/16"	3'-0"	19W4
1" x 3/16"	12-1/8"	3'-0"	19W4
1-1/4" x 3/16"	9-3/4"	2'-6"	19W4
1-1/4" x 3/16"	10-15/16"	2'-6"	19W4
1-1/4" x 3/16"	9-3/4"	3'-0"	19W4
1-1/4" x 3/16"	10-15/16"	3'-0"	19W4
1-1/4" x 3/16"	12-1/8"	3'-0"	19W4

Black finish available per NAAMM Standards. One shop coat of manufacturer's standard paint which is designed to protect the grating from the elements during transit only.

Galvanized finish available per NAAMM Standards. Gratings specified to be galvanized shall have their exposed surfaces zinc-coated by the hot dip process after fabrication, with a coating of not less than 1.8 oz/sf of coated surface per ASTM123.

WE CAN GET IT THERE ... FAST!

Architectural METAL SOLUTIONS

🥍 Ask about our Architectural Catalog!

www.ohiogratings.com

- NC Wildlife Education H.Q. - Sun Screen
- Blackhawk Deck Chicago, IL - PressLock Grille
- Leon Medical, FL - Visual Screen Louver
- Chipotle Restaurant - Sun Screen
- Minneapolis Garage - Building Facade Grille
- Akron Art Museum, OH - Sun Screen & Grille

OHIO GRATINGS, INC.

Оню Gratings, Inc. • 5299 Southway St. SW • Canton, OH 44706 USA • Phone: 800-321-9800 • Fax: 330-477-7872 • www.ohiogratings.com

